1. CJM 2013 (vol 66 pp. 400)
 Mendonça, Bruno; Tojeiro, Ruy

Umbilical Submanifolds of $\mathbb{S}^n\times \mathbb{R}$
We give a complete classification of umbilical submanifolds of arbitrary dimension and codimension of
$\mathbb{S}^n\times \mathbb{R}$, extending the classification of umbilical surfaces
in $\mathbb{S}^2\times \mathbb{R}$ by Souam and Toubiana as well as the local
description of umbilical hypersurfaces in $\mathbb{S}^n\times \mathbb{R}$ by Van der
Veken and Vrancken. We prove that, besides small spheres in a slice,
up to isometries of the ambient space they come in a twoparameter
family of rotational submanifolds
whose substantial codimension is either one or two and whose profile
is a curve in a totally geodesic $\mathbb{S}^1\times \mathbb{R}$ or $\mathbb{S}^2\times
\mathbb{R}$, respectively, the former case arising in a oneparameter
family. All of them are diffeomorphic to a sphere, except for a single
element that is diffeomorphic to Euclidean space. We obtain explicit
parametrizations of all such submanifolds. We also study more general
classes of submanifolds of $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$. In
particular, we give a complete description of all submanifolds in
those product spaces
for which the tangent component of a unit vector field spanning the
factor $\mathbb{R}$ is an eigenvector of all shape operators. We show that
surfaces with parallel mean curvature vector in $\mathbb{S}^n\times \mathbb{R}$ and
$\mathbb{H}^n\times \mathbb{R}$ having this property are rotational surfaces, and use
this fact to improve some recent results by Alencar, do Carmo, and
Tribuzy.
We also obtain a Dajczertype reduction of codimension theorem for
submanifolds of $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$.
Keywords:umbilical submanifolds, product spaces $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$ Categories:53B25, 53C40 

2. CJM 2005 (vol 57 pp. 1291)
 Riveros, Carlos M. C.; Tenenblat, Keti

Dupin Hypersurfaces in $\mathbb R^5$
We study Dupin
hypersurfaces in $\mathbb R^5$ parametrized by lines of curvature, with
four distinct principal curvatures. We characterize locally a generic
family of such hypersurfaces in terms of the principal curvatures and
four vector valued functions of one variable. We show that these vector
valued functions are invariant by inversions and homotheties.
Categories:53B25, 53C42, 35N10, 37K10 
