location:  Publications → journals
Search results

Search: MSC category 53 ( Differential geometry )

 Expand all        Collapse all Results 26 - 50 of 83

26. CJM 2011 (vol 64 pp. 44)

Carvalho, T. M. M.; Moreira, H. N.; Tenenblat, K.
 Surfaces of Rotation with Constant Mean Curvature in the Direction of a Unitary Normal Vector Field in a Randers Space We consider the Randers space $(V^n,F_b)$ obtained by perturbing the Euclidean metric by a translation, $F_b=\alpha+\beta$, where $\alpha$ is the Euclidean metric and $\beta$ is a $1$-form with norm $b$, $0\leq b\lt 1$. We introduce the concept of a hypersurface with constant mean curvature in the direction of a unitary normal vector field. We obtain the ordinary differential equation that characterizes the rotational surfaces $(V^3,F_b)$ of constant mean curvature (cmc) in the direction of a unitary normal vector field. These equations reduce to the classical equation of the rotational cmc surfaces in Euclidean space, when $b=0$. It also reduces to the equation that characterizes the minimal rotational surfaces in $(V^3,F_b)$ when $H=0$, obtained by M. Souza and K. Tenenblat. Although the differential equation depends on the choice of the normal direction, we show that both equations determine the same rotational surface, up to a reflection. We also show that the round cylinders are cmc surfaces in the direction of the unitary normal field. They are generated by the constant solution of the differential equation. By considering the equation as a nonlinear dynamical system, we provide a qualitative analysis, for $0\lt b\lt \frac{\sqrt{3}}{3}$. Using the concept of stability and considering the linearization around the single equilibrium point (the constant solution), we verify that the solutions are locally asymptotically stable spirals. This is proved by constructing a Lyapunov function for the dynamical system and by determining the basin of stability of the equilibrium point. The surfaces of rotation generated by such solutions tend asymptotically to one end of the cylinder. Keywords:Finsler spaces, Randers spaces, mean curvature, Liapunov functionsCategory:53C20

27. CJM 2011 (vol 63 pp. 878)

Howard, Benjamin; Manon, Christopher; Millson, John
 The Toric Geometry of Triangulated Polygons in Euclidean Spac Speyer and Sturmfels associated GrÃ¶bner toric degenerations $\mathrm{Gr}_2(\mathbb{C}^n)^{\mathcal{T}}$ of $\mathrm{Gr}_2(\mathbb{C}^n)$ with each trivalent tree $\mathcal{T}$ having $n$ leaves. These degenerations induce toric degenerations $M_{\mathbf{r}}^{\mathcal{T}}$ of $M_{\mathbf{r}}$, the space of $n$ ordered, weighted (by $\mathbf{r}$) points on the projective line. Our goal in this paper is to give a geometric (Euclidean polygon) description of the toric fibers and describe the action of the compact part of the torus as "bendings of polygons". We prove the conjecture of Foth and Hu that the toric fibers are homeomorphic to the spaces defined by Kamiyama and Yoshida. Categories:14L24, 53D20

28. CJM 2011 (vol 63 pp. 938)

Li-Bland, David
 AV-Courant Algebroids and Generalized CR Structures We construct a generalization of Courant algebroids that are classified by the third cohomology group $H^3(A,V)$, where $A$ is a Lie Algebroid, and $V$ is an $A$-module. We see that both Courant algebroids and $\mathcal{E}^1(M)$ structures are examples of them. Finally we introduce generalized CR structures on a manifold, which are a generalization of generalized complex structures, and show that every CR structure and contact structure is an example of a generalized CR structure. Category:53D18

29. CJM 2010 (vol 63 pp. 55)

Chau, Albert; Tam, Luen-Fai; Yu, Chengjie
 Pseudolocality for the Ricci Flow and Applications Perelman established a differential Li--Yau--Hamilton (LYH) type inequality for fundamental solutions of the conjugate heat equation corresponding to the Ricci flow on compact manifolds. As an application of the LYH inequality, Perelman proved a pseudolocality result for the Ricci flow on compact manifolds. In this article we provide the details for the proofs of these results in the case of a complete noncompact Riemannian manifold. Using these results we prove that under certain conditions, a finite time singularity of the Ricci flow must form within a compact set. The conditions are satisfied by asymptotically flat manifolds. We also prove a long time existence result for the K\"ahler--Ricci flow on complete nonnegatively curved K\"ahler manifolds. Categories:53C44, 58J37, 35B35

30. CJM 2010 (vol 62 pp. 1264)

Chen, Jingyi; Fraser, Ailana
 Holomorphic variations of minimal disks with boundary on a Lagrangian surface Let $L$ be an oriented Lagrangian submanifold in an $n$-dimensional KÃ¤hler manifold~$M$. Let $u \colon D \to M$ be a minimal immersion from a disk $D$ with $u(\partial D) \subset L$ such that $u(D)$ meets $L$ orthogonally along $u(\partial D)$. Then the real dimension of the space of admissible holomorphic variations is at least $n+\mu(E,F)$, where $\mu(E,F)$ is a boundary Maslov index; the minimal disk is holomorphic if there exist $n$ admissible holomorphic variations that are linearly independent over $\mathbb{R}$ at some point $p \in \partial D$; if $M = \mathbb{C}P^n$ and $u$ intersects $L$ positively, then $u$ is holomorphic if it is stable, and its Morse index is at least $n+\mu(E,F)$ if $u$ is unstable. Categories:58E12, 53C21, 53C26

31. CJM 2010 (vol 62 pp. 1082)

Godinho, Leonor; Sousa-Dias, M. E.
 The Fundamental Group of $S^1$-manifolds We address the problem of computing the fundamental group of a symplectic $S^1$-manifold for non-Hamiltonian actions on compact manifolds, and for Hamiltonian actions on non-compact manifolds with a proper moment map. We generalize known results for compact manifolds equipped with a Hamiltonian $S^1$-action. Several examples are presented to illustrate our main results. Categories:53D20, 37J10, 55Q05

32. CJM 2010 (vol 62 pp. 975)

Bjorndahl, Christina; Karshon, Yael
 Revisiting Tietze-Nakajima: Local and Global Convexity for Maps A theorem of Tietze and Nakajima, from 1928, asserts that if a subset $X$ of $\mathbb{R}^n$ is closed, connected, and locally convex, then it is convex. We give an analogous local to global convexity" theorem when the inclusion map of $X$ to $\mathbb{R}^n$ is replaced by a map from a topological space $X$ to $\mathbb{R}^n$ that satisfies certain local properties. Our motivation comes from the Condevaux--Dazord--Molino proof of the Atiyah--Guillemin--Sternberg convexity theorem in symplectic geometry. Categories:53D20, 52B99

33. CJM 2010 (vol 62 pp. 1037)

Calviño-Louzao, E.; García-Río, E.; Vázquez-Lorenzo, R.
 Riemann Extensions of Torsion-Free Connections with Degenerate Ricci Tensor {Correspondence} between torsion-free connections with {nilpotent skew-symmetric curvature operator} and IP Riemann extensions is shown. Some consequences are derived in the study of four-dimensional IP metrics and locally homogeneous affine surfaces. Keywords:Walker metric, Riemann extension, curvature operator, projectively flat and recurrent affine connectionCategories:53B30, 53C50

34. CJM 2009 (vol 62 pp. 52)

Deng, Shaoqiang
 An Algebraic Approach to Weakly Symmetric Finsler Spaces In this paper, we introduce a new algebraic notion, weakly symmetric Lie algebras, to give an algebraic description of an interesting class of homogeneous Riemann--Finsler spaces, weakly symmetric Finsler spaces. Using this new definition, we are able to give a classification of weakly symmetric Finsler spaces with dimensions $2$ and $3$. Finally, we show that all the non-Riemannian reversible weakly symmetric Finsler spaces we find are non-Berwaldian and with vanishing S-curvature. This means that reversible non-Berwaldian Finsler spaces with vanishing S-curvature may exist at large. Hence the generalized volume comparison theorems due to Z. Shen are valid for a rather large class of Finsler spaces. Keywords:weakly symmetric Finsler spaces, weakly symmetric Lie algebras, Berwald spaces, S-curvatureCategories:53C60, 58B20, 22E46, 22E60

35. CJM 2009 (vol 62 pp. 320)

Jerrard, Robert L.
 Some Rigidity Results Related to MongeâAmpÃ¨re Functions The space of Monge-AmpÃ¨re functions, introduced by J. H. G. Fu, is a space of rather rough functions in which the map $u\mapsto \operatorname{Det} D^2 u$ is well defined and weakly continuous with respect to a natural notion of weak convergence. We prove a rigidity theorem for Lagrangian integral currents that allows us to extend the original definition of Monge-AmpÃ¨re functions. We also prove that if a Monge-AmpÃ¨re function $u$ on a bounded set $\Omega\subset\mathcal{R}^2$ satisfies the equation $\operatorname{Det} D^2 u=0$ in a particular weak sense, then the graph of $u$ is a developable surface, and moreover $u$ enjoys somewhat better regularity properties than an arbitrary Monge-AmpÃ¨re function of $2$ variables. Categories:49Q15, 53C24

36. CJM 2009 (vol 62 pp. 3)

Anchouche, Boudjemâa
 On the Asymptotic Behavior of Complete KÃ¤hler Metrics of Positive Ricci Curvature Let $( X,g)$ be a complete noncompact KÃ¤hler manifold, of dimension $n\geq2,$ with positive Ricci curvature and of standard type (see the definition below). N. Mok proved that $X$ can be compactified, \emph{i.e.,} $X$ is biholomorphic to a quasi-projective variety$.$ The aim of this paper is to prove that the $L^{2}$ holomorphic sections of the line bundle $K_{X}^{-q}$ and the volume form of the metric $g$ have no essential singularities near the divisor at infinity. As a consequence we obtain a comparison between the volume forms of the KÃ¤hler metric $g$ and of the Fubini--Study metric induced on $X$. In the case of $\dim_{\mathbb{C} }X=2,$ we establish a relation between the number of components of the divisor $D$ and the dimension of the groups $H^{i}( \overline{X}, \Omega_{\overline{X}}^{1}( \log D) )$. Categories:53C55, 32A10

37. CJM 2009 (vol 61 pp. 1357)

Shen, Zhongmin
 On a Class of Landsberg Metrics in Finsler Geometry In this paper, we study a long existing open problem on Landsberg metrics in Finsler geometry. We consider Finsler metrics defined by a Riemannian metric and a $1$-form on a manifold. We show that a \emph{regular} Finsler metric in this form is Landsbergian if and only if it is Berwaldian. We further show that there is a two-parameter family of functions, $\phi=\phi(s)$, for which there are a Riemannian metric $\alpha$ and a $1$-form $\beta$ on a manifold $M$ such that the scalar function $F=\alpha \phi (\beta/\alpha)$ on $TM$ is an almost regular Landsberg metric, but not a Berwald metric. Categories:53B40, 53C60

38. CJM 2009 (vol 61 pp. 1201)

Arvanitoyeorgos, Andreas; Dzhepko, V. V.; Nikonorov, Yu. G.
 Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups A Riemannian manifold $(M,\rho)$ is called Einstein if the metric $\rho$ satisfies the condition \linebreak$\Ric (\rho)=c\cdot \rho$ for some constant $c$. This paper is devoted to the investigation of $G$-invariant Einstein metrics, with additional symmetries, on some homogeneous spaces $G/H$ of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds $\SO(n)/\SO(l)$. Furthermore, we show that for any positive integer $p$ there exists a Stiefel manifold $\SO(n)/\SO(l)$ that admits at least $p$ $\SO(n)$-invariant Einstein metrics. Keywords:Riemannian manifolds, homogeneous spaces, Einstein metrics, Stiefel manifoldsCategories:53C25, 53C30

39. CJM 2009 (vol 61 pp. 721)

Calin, Ovidiu; Chang, Der-Chen; Markina, Irina
 SubRiemannian Geometry on the Sphere $\mathbb{S}^3$ We discuss the subRiemannian geometry induced by two noncommutative vector fields which are left invariant on the Lie group $\mathbb{S}^3$. Keywords:noncommutative Lie group, quaternion group, subRiemannian geodesic, horizontal distribution, connectivity theorem, holonomic constraintCategories:53C17, 53C22, 35H20

40. CJM 2009 (vol 61 pp. 740)

Caprace, Pierre-Emmanuel; Haglund, Frédéric
 On Geometric Flats in the CAT(0) Realization of Coxeter Groups and Tits Buildings Given a complete CAT(0) space $X$ endowed with a geometric action of a group $\Gamma$, it is known that if $\Gamma$ contains a free abelian group of rank $n$, then $X$ contains a geometric flat of dimension $n$. We prove the converse of this statement in the special case where $X$ is a convex subcomplex of the CAT(0) realization of a Coxeter group $W$, and $\Gamma$ is a subgroup of $W$. In particular a convex cocompact subgroup of a Coxeter group is Gromov-hyperbolic if and only if it does not contain a free abelian group of rank 2. Our result also provides an explicit control on geometric flats in the CAT(0) realization of arbitrary Tits buildings. Keywords:Coxeter group, flat rank, $\cat0$ space, buildingCategories:20F55, 51F15, 53C23, 20E42, 51E24

41. CJM 2009 (vol 61 pp. 641)

 Characterization of Parallel Isometric Immersions of Space Forms into Space Forms in the Class of Isotropic Immersions For an isotropic submanifold $M^n\,(n\geqq3)$ of a space form $\widetilde{M}^{n+p}(c)$ of constant sectional curvature $c$, we show that if the mean curvature vector of $M^n$ is parallel and the sectional curvature $K$ of $M^n$ satisfies some inequality, then the second fundamental form of $M^n$ in $\widetilde{M}^{n+p}$ is parallel and our manifold $M^n$ is a space form. Keywords:space forms, parallel isometric immersions, isotropic immersions, totally umbilic, Veronese manifolds, sectional curvatures, parallel mean curvature vectorCategories:53C40, 53C42

42. CJM 2008 (vol 60 pp. 1201)

Bahuaud, Eric; Marsh, Tracey
 HÃ¶lder Compactification for Some Manifolds with Pinched Negative Curvature Near Infinity We consider a complete noncompact Riemannian manifold $M$ and give conditions on a compact submanifold $K \subset M$ so that the outward normal exponential map off the boundary of $K$ is a diffeomorphism onto $\MlK$. We use this to compactify $M$ and show that pinched negative sectional curvature outside $K$ implies $M$ has a compactification with a well-defined H\"older structure independent of $K$. The H\"older constant depends on the ratio of the curvature pinching. This extends and generalizes a 1985 result of Anderson and Schoen. Category:53C20

43. CJM 2008 (vol 60 pp. 822)

Kuwae, Kazuhiro
 Maximum Principles for Subharmonic Functions Via Local Semi-Dirichlet Forms Maximum principles for subharmonic functions in the framework of quasi-regular local semi-Dirichlet forms admitting lower bounds are presented. As applications, we give weak and strong maximum principles for (local) subsolutions of a second order elliptic differential operator on the domain of Euclidean space under conditions on coefficients, which partially generalize the results by Stampacchia. Keywords:positivity preserving form, semi-Dirichlet form, Dirichlet form, subharmonic functions, superharmonic functions, harmonic functions, weak maximum principle, strong maximum principle, irreducibility, absolute continuity conditionCategories:31C25, 35B50, 60J45, 35J, 53C, 58

44. CJM 2008 (vol 60 pp. 572)

Hitrik, Michael; Sj{östrand, Johannes
 Non-Selfadjoint Perturbations of Selfadjoint Operators in Two Dimensions IIIa. One Branching Point This is the third in a series of works devoted to spectral asymptotics for non-selfadjoint perturbations of selfadjoint $h$-pseudodifferential operators in dimension 2, having a periodic classical flow. Assuming that the strength $\epsilon$ of the perturbation is in the range $h^2\ll \epsilon \ll h^{1/2}$ (and may sometimes reach even smaller values), we get an asymptotic description of the eigenvalues in rectangles $[-1/C,1/C]+i\epsilon [F_0-1/C,F_0+1/C]$, $C\gg 1$, when $\epsilon F_0$ is a saddle point value of the flow average of the leading perturbation. Keywords:non-selfadjoint, eigenvalue, periodic flow, branching singularityCategories:31C10, 35P20, 35Q40, 37J35, 37J45, 53D22, 58J40

45. CJM 2008 (vol 60 pp. 457)

Teplyaev, Alexander
 Harmonic Coordinates on Fractals with Finitely Ramified Cell Structure We define sets with finitely ramified cell structure, which are generalizations of post-crit8cally finite self-similar sets introduced by Kigami and of fractafolds introduced by Strichartz. In general, we do not assume even local self-similarity, and allow countably many cells connected at each junction point. In particular, we consider post-critically infinite fractals. We prove that if Kigami's resistance form satisfies certain assumptions, then there exists a weak Riemannian metric such that the energy can be expressed as the integral of the norm squared of a weak gradient with respect to an energy measure. Furthermore, we prove that if such a set can be homeomorphically represented in harmonic coordinates, then for smooth functions the weak gradient can be replaced by the usual gradient. We also prove a simple formula for the energy measure Laplacian in harmonic coordinates. Keywords:fractals, self-similarity, energy, resistance, Dirichlet forms, diffusions, quantum graphs, generalized Riemannian metricCategories:28A80, 31C25, 53B99, 58J65, 60J60, 60G18

46. CJM 2008 (vol 60 pp. 443)

Shen, Z.; Yildirim, G. Civi
 On a Class of Projectively Flat Metrics with Constant Flag Curvature In this paper, we find equations that characterize locally projectively flat Finsler metrics in the form $F = (\alpha + \beta)^2/\alpha$, where $\alpha=\sqrt{a_{ij}y^iy^j}$ is a Riemannian metric and $\beta= b_i y^i$ is a $1$-form. Then we completely determine the local structure of those with constant flag curvature. Category:53B40

47. CJM 2007 (vol 59 pp. 1245)

Chen, Qun; Zhou, Zhen-Rong
 On Gap Properties and Instabilities of $p$-Yang--Mills Fields We consider the $p$-Yang--Mills functional $(p\geq 2)$ defined as $\YM_p(\nabla):=\frac 1 p \int_M \|\rn\|^p$. We call critical points of $\YM_p(\cdot)$ the $p$-Yang--Mills connections, and the associated curvature $\rn$ the $p$-Yang--Mills fields. In this paper, we prove gap properties and instability theorems for $p$-Yang--Mills fields over submanifolds in $\mathbb{R}^{n+k}$ and $\mathbb{S}^{n+k}$. Keywords:$p$-Yang--Mills field, gap property, instability, submanifoldCategories:58E15, 53C05

48. CJM 2007 (vol 59 pp. 981)

Jiang, Yunfeng
 The Chen--Ruan Cohomology of Weighted Projective Spaces In this paper we study the Chen--Ruan cohomology ring of weighted projective spaces. Given a weighted projective space ${\bf P}^{n}_{q_{0}, \dots, q_{n}}$, we determine all of its twisted sectors and the corresponding degree shifting numbers. The main result of this paper is that the obstruction bundle over any 3\nobreakdash-multi\-sector is a direct sum of line bundles which we use to compute the orbifold cup product. Finally we compute the Chen--Ruan cohomology ring of weighted projective space ${\bf P}^{5}_{1,2,2,3,3,3}$. Keywords:Chen--Ruan cohomology, twisted sectors, toric varieties, weighted projective space, localizationCategories:14N35, 53D45

49. CJM 2007 (vol 59 pp. 845)

Schaffhauser, Florent
 Representations of the Fundamental Group of an $L$-Punctured Sphere Generated by Products of Lagrangian Involutions In this paper, we characterize unitary representations of $\pi:=\piS$ whose generators $u_1, \dots, u_l$ (lying in conjugacy classes fixed initially) can be decomposed as products of two Lagrangian involutions $u_j=\s_j\s_{j+1}$ with $\s_{l+1}=\s_1$. Our main result is that such representations are exactly the elements of the fixed-point set of an anti-symplectic involution defined on the moduli space $\Mod:=\Hom_{\mathcal C}(\pi,U(n))/U(n)$. Consequently, as this fixed-point set is non-empty, it is a Lagrangian submanifold of $\Mod$. To prove this, we use the quasi-Hamiltonian description of the symplectic structure of $\Mod$ and give conditions on an involution defined on a quasi-Hamiltonian $U$-space $(M, \w, \mu\from M \to U)$ for it to induce an anti-symplectic involution on the reduced space $M/\!/U := \mu^{-1}(\{1\})/U$. Keywords:momentum maps, moduli spaces, Lagrangian submanifolds, anti-symplectic involutions, quasi-HamiltonianCategories:53D20, 53D30

50. CJM 2006 (vol 58 pp. 600)

Martinez-Maure, Yves
 Geometric Study of Minkowski Differences of Plane Convex Bodies In the Euclidean plane $\mathbb{R}^{2}$, we define the Minkowski difference $\mathcal{K}-\mathcal{L}$ of two arbitrary convex bodies $\mathcal{K}$, $\mathcal{L}$ as a rectifiable closed curve $\mathcal{H}_{h}\subset \mathbb{R} ^{2}$ that is determined by the difference $h=h_{\mathcal{K}}-h_{\mathcal{L} }$ of their support functions. This curve $\mathcal{H}_{h}$ is called the hedgehog with support function $h$. More generally, the object of hedgehog theory is to study the Brunn--Minkowski theory in the vector space of Minkowski differences of arbitrary convex bodies of Euclidean space $\mathbb{R} ^{n+1}$, defined as (possibly singular and self-intersecting) hypersurfaces of $\mathbb{R}^{n+1}$. Hedgehog theory is useful for: (i) studying convex bodies by splitting them into a sum in order to reveal their structure; (ii) converting analytical problems into geometrical ones by considering certain real functions as support functions. The purpose of this paper is to give a detailed study of plane hedgehogs, which constitute the basis of the theory. In particular: (i) we study their length measures and solve the extension of the Christoffel--Minkowski problem to plane hedgehogs; (ii) we characterize support functions of plane convex bodies among support functions of plane hedgehogs and support functions of plane hedgehogs among continuous functions; (iii) we study the mixed area of hedgehogs in $\mathbb{R}^{2}$ and give an extension of the classical Minkowski inequality (and thus of the isoperimetric inequality) to hedgehogs. Categories:52A30, 52A10, 53A04, 52A38, 52A39, 52A40
 Page Previous 1 2 3 4 Next
 top of page | contact us | privacy | site map |