Expand all Collapse all | Results 1 - 25 of 35 |
1. CJM 2013 (vol 67 pp. 3)
On the Local Convexity of Intersection Bodies of Revolution One of the fundamental results in Convex Geometry is Busemann's
theorem, which states that the intersection body of a symmetric convex
body is convex. Thus, it is only natural to ask if there is a
quantitative version of Busemann's theorem, i.e., if the intersection
body operation actually improves convexity. In this paper we
concentrate on the symmetric bodies of revolution to provide several
results on the (strict) improvement of convexity under the
intersection body operation. It is shown that the intersection body of
a symmetric convex body of revolution has the same asymptotic behavior
near the equator as the Euclidean
ball. We apply this result to show that in sufficiently high
dimension the double intersection body of a symmetric convex body of
revolution is very close to an ellipsoid in the Banach-Mazur
distance. We also prove results on the local convexity at the equator
of intersection bodies in the class of star bodies of revolution.
Keywords:convex bodies, intersection bodies of star bodies, Busemann's theorem, local convexity Categories:52A20, 52A38, 44A12 |
2. CJM 2013 (vol 66 pp. 783)
Infinitesimal Rigidity of Convex Polyhedra through the Second Derivative of the Hilbert-Einstein Functional |
Infinitesimal Rigidity of Convex Polyhedra through the Second Derivative of the Hilbert-Einstein Functional The paper is centered around a new proof of the infinitesimal rigidity
of convex polyhedra. The proof is based on studying derivatives of the
discrete Hilbert-Einstein functional on the space of "warped
polyhedra" with a fixed metric on the boundary.
The situation is in a sense dual to using derivatives of the volume in order to prove the Gauss infinitesimal rigidity of convex polyhedra. This latter kind of rigidity is related to the Minkowski theorem on the existence and uniqueness of a polyhedron with prescribed face normals and face areas.
In the spherical and in the hyperbolic-de Sitter space, there is a perfect duality between the Hilbert-Einstein functional and the volume, as well as between both kinds of rigidity.
We review some of the related work and discuss directions for future research.
Keywords:convex polyhedron, rigidity, Hilbert-Einstein functional, Minkowski theorem Categories:52B99, 53C24 |
3. CJM 2012 (vol 65 pp. 1236)
Higher Connectedness Properties of Support Points and Functionals of Convex Sets We prove that the set of all support points of a nonempty closed convex bounded set $C$ in a real infinite-dimensional Banach space $X$ is $\mathrm{AR(}\sigma$-$\mathrm{compact)}$ and contractible. Under suitable conditions, similar results are proved also for the set of all support functionals of $C$ and for the domain, the graph and the range of the subdifferential map of a proper convex l.s.c. function on $X$.
Keywords:convex set, support point, support functional, absolute retract, Leray-Schauder continuation principle Categories:46A55, 46B99, 52A07 |
4. CJM 2012 (vol 65 pp. 675)
On the Bragg Diffraction Spectra of a Meyer Set Meyer sets have a relatively dense set of Bragg peaks and
for this reason they may be considered as basic mathematical
examples of (aperiodic) crystals. In this paper we investigate the
pure point part of the diffraction of Meyer sets in more detail.
The results are of two kinds. First we show that given a Meyer set
and any positive intensity $a$ less than the maximum intensity of its Bragg
peaks, the set of Bragg peaks whose intensity exceeds $a$ is
itself a Meyer set (in the Fourier space). Second we show that if a
Meyer set is modified by addition and removal of points in such a
way that its density is not altered too much (the allowable amount
being given explicitly as a proportion of the original density)
then the newly obtained set still has a relatively dense set of Bragg
peaks.
Keywords:diffraction, Meyer set, Bragg peaks Category:52C23 |
5. CJM 2012 (vol 66 pp. 700)
Inversion of the Radon Transform on the Free Nilpotent Lie Group of Step Two Let $F_{2n,2}$ be the free nilpotent Lie group of step two on $2n$
generators, and let $\mathbf P$ denote the affine automorphism group
of $F_{2n,2}$. In this article the theory of continuous wavelet
transform on $F_{2n,2}$ associated with $\mathbf P$ is developed,
and then a type of radial wavelets is constructed. Secondly, the
Radon transform on $F_{2n,2}$ is studied and two equivalent
characterizations of the range for Radon transform are given.
Several kinds of inversion Radon transform formulae
are established. One is obtained from the Euclidean Fourier transform, the others are from group Fourier transform. By using wavelet transform we deduce an inversion formula of the Radon
transform, which
does not require the smoothness of
functions if the wavelet satisfies the differentiability property.
Specially, if $n=1$, $F_{2,2}$ is the $3$-dimensional Heisenberg group $H^1$, the
inversion formula of the Radon transform is valid which is
associated with the sub-Laplacian on $F_{2,2}$. This result cannot
be extended to the case $n\geq 2$.
Keywords:Radon transform, wavelet transform, free nilpotent Lie group, unitary representation, inversion formula, sub-Laplacian Categories:43A85, 44A12, 52A38 |
6. CJM 2012 (vol 65 pp. 1401)
A Universal Volume Comparison Theorem for Finsler Manifolds and Related Results In this paper, we establish a universal volume comparison theorem
for Finsler manifolds and give the Berger-Kazdan inequality and
SantalÃ³'s formula in Finsler geometry. Being based on these, we
derive a Berger-Kazdan type comparison theorem and a Croke type
isoperimetric inequality for Finsler manifolds.
Keywords:Finsler manifold, Berger-Kazdan inequality, Berger-Kazdan comparison theorem, SantalÃ³'s formula, Croke's isoperimetric inequality Categories:53B40, 53C65, 52A38 |
7. CJM 2011 (vol 64 pp. 1036)
Harmonic Analysis Related to Homogeneous Varieties in Three Dimensional Vector Spaces over Finite Fields |
Harmonic Analysis Related to Homogeneous Varieties in Three Dimensional Vector Spaces over Finite Fields In this paper we study the extension problem, the
averaging problem, and the generalized ErdÅs-Falconer distance
problem associated with arbitrary homogeneous varieties in three
dimensional vector spaces over finite fields. In the case when the
varieties do not contain any plane passing through the origin, we
obtain the best possible results on the aforementioned three problems. In
particular, our result on the extension problem modestly generalizes
the result by Mockenhaupt and Tao who studied the particular conical
extension problem. In addition, investigating the Fourier decay on
homogeneous varieties enables us to give complete mapping properties
of averaging operators. Moreover, we improve the size condition on a
set such that the cardinality of its distance set is nontrivial.
Keywords:extension problems, averaging operator, finite fields, ErdÅs-Falconer distance problems, homogeneous polynomial Categories:42B05, 11T24, 52C17 |
8. CJM 2011 (vol 63 pp. 1254)
Constructions of Chiral Polytopes of Small Rank An abstract polytope of rank $n$ is said to be chiral if its
automorphism group has precisely two orbits on the flags, such that
adjacent flags belong to distinct orbits. This paper describes
a general method for deriving new finite chiral polytopes from old
finite chiral polytopes of the same rank. In particular, the technique
is used to construct many new examples in ranks $3$, $4$, and $5$.
Keywords:abstract regular polytope, chiral polytope, chiral maps Categories:51M20, 52B15, 05C25 |
9. CJM 2011 (vol 63 pp. 1038)
Critical Points and Resonance of Hyperplane Arrangements If $\Phi_\lambda$ is a master function corresponding to a hyperplane arrangement
$\mathcal A$ and a collection of weights $\lambda$, we investigate the relationship
between the critical set of $\Phi_\lambda$, the variety defined by the vanishing
of the one-form $\omega_\lambda=\operatorname{d} \log \Phi_\lambda$, and the resonance of $\lambda$.
For arrangements satisfying certain conditions, we show that if $\lambda$ is
resonant in dimension $p$, then the critical set
of $\Phi_\lambda$ has codimension
at most $p$. These include all free arrangements and all rank $3$ arrangements.
Keywords:hyperplane arrangement, master function, resonant weights, critical set Categories:32S22, 55N25, 52C35 |
10. CJM 2011 (vol 63 pp. 1220)
Similar Sublattices of Planar Lattices The similar sublattices of a planar lattice can be classified via
its multiplier ring. The latter is the ring of rational integers in
the generic case, and an order in an imaginary quadratic field
otherwise. Several classes of examples are discussed, with special
emphasis on concrete results. In particular, we derive Dirichlet
series generating functions for the number of distinct similar
sublattices of a given index, and relate them to
zeta functions of orders in imaginary quadratic fields.
Categories:11H06, 11R11, 52C05, 82D25 |
11. CJM 2010 (vol 62 pp. 1293)
Canonical Toric Fano Threefolds
An inductive approach to classifying all toric Fano varieties is
given. As an application of this technique, we present a
classification of the toric Fano threefolds with at worst canonical
singularities. Up to isomorphism, there are $674,\!688$ such
varieties.
Keywords:toric, Fano, threefold, canonical singularities, convex polytopes Categories:14J30, 14J30, 14M25, 52B20 |
12. CJM 2010 (vol 62 pp. 1228)
Valuations for Matroid Polytope Subdivisions
We prove that the ranks of the subsets and the activities of the bases
of a matroid define valuations for the subdivisions of a matroid
polytope into smaller matroid polytopes.
Categories:05B35, 52B40, 52B45, 52C22 |
13. CJM 2010 (vol 62 pp. 975)
Revisiting Tietze-Nakajima: Local and Global Convexity for Maps
A theorem of Tietze and Nakajima, from 1928, asserts that
if a subset $X$ of $\mathbb{R}^n$ is closed, connected, and locally convex,
then it is convex.
We give an analogous ``local to global convexity" theorem
when the inclusion map of $X$ to $\mathbb{R}^n$ is replaced by a map
from a topological space $X$ to $\mathbb{R}^n$ that satisfies
certain local properties.
Our motivation comes from the Condevaux--Dazord--Molino proof
of the Atiyah--Guillemin--Sternberg convexity theorem in symplectic geometry.
Categories:53D20, 52B99 |
14. CJM 2010 (vol 62 pp. 1404)
Characterizations of Extremals for some Functionals on Convex Bodies
We investigate equality cases in inequalities for Sylvester-type
functionals. Namely, it was proven by Campi, Colesanti, and Gronchi
that the quantity
$$
\int_{x_0\in K}\cdots\int_{x_n\in
K}[V(\textrm{conv}\{x_0,\dots,x_n\})]^pdx_0\cdots dx_n , n\geq d, p\geq
1
$$
is maximized by triangles among all planar convex bodies $K$
(parallelograms in the symmetric case). We show that these are the
only maximizers, a fact proven by Giannopoulos for $p=1$.
Moreover, if $h$: $\mathbb{R}_+\rightarrow \mathbb{R}_+$ is a
strictly increasing function and $W_j$ is the $j$-th
quermassintegral in $\mathbb{R}^d$, we prove that the functional
$$
\int_{x_0\in K_0}\cdots\int_{x_n\in
K_n}h(W_j(\textrm{conv}\{x_0,\dots,x_n\}))dx_0\cdots dx_n , n \geq d
$$
is
minimized among the $(n+1)$-tuples of convex bodies of fixed
volumes if and only if $K_0,\dots,K_n$ are homothetic ellipsoids
when $j=0$ (extending a result of Groemer) and Euclidean balls
with the same center when $j>0$ (extending a result of Hartzoulaki
and Paouris).
Categories:52A40, 52A22 |
15. CJM 2009 (vol 61 pp. 1300)
Monodromy Groups and Self-Invariance For every polytope $\mathcal{P}$ there is the universal regular
polytope of the same rank as $\mathcal{P}$ corresponding to the
Coxeter group $\mathcal{C} =[\infty, \dots, \infty]$. For a given
automorphism $d$ of $\mathcal{C}$, using monodromy groups, we
construct a combinatorial structure $\mathcal{P}^d$. When
$\mathcal{P}^d$ is a polytope isomorphic to $\mathcal{P}$ we say that
$\mathcal{P}$ is self-invariant with respect to $d$, or
$d$-invariant. We develop algebraic tools for investigating these
operations on polytopes, and in particular give a criterion on the
existence of a $d$\nobreakdash-auto\-morphism of a given order. As an application,
we analyze properties of self-dual edge-transitive polyhedra and
polyhedra with two flag-orbits. We investigate properties of medials
of such polyhedra. Furthermore, we give an example of a self-dual
equivelar polyhedron which contains no polarity (duality of order
2). We also extend the concept of Petrie dual to higher dimensions,
and we show how it can be dealt with using self-invariance.
Keywords:maps, abstract polytopes, self-duality, monodromy groups, medials of polyhedra Categories:51M20, 05C25, 05C10, 05C30, 52B70 |
16. CJM 2009 (vol 61 pp. 904)
The Face Semigroup Algebra of a Hyperplane Arrangement This article presents a study of an algebra spanned by the faces of a
hyperplane arrangement. The quiver with relations of the algebra is
computed and the algebra is shown to be a Koszul algebra.
It is shown that the algebra depends only on the intersection lattice of
the hyperplane arrangement. A complete system of primitive orthogonal
idempotents for the algebra is constructed and other algebraic structure
is determined including: a description of the projective indecomposable
modules, the Cartan invariants, projective resolutions of the simple
modules, the Hochschild homology and cohomology, and the Koszul dual
algebra. A new cohomology construction on posets is introduced, and it is
shown that the face semigroup algebra is isomorphic to the cohomology
algebra when this construction is applied to the intersection lattice of
the hyperplane arrangement.
Categories:52C35, 05E25, 16S37 |
17. CJM 2009 (vol 61 pp. 888)
Face Ring Multiplicity via CM-Connectivity Sequences The multiplicity conjecture of Herzog, Huneke, and Srinivasan
is verified for the face rings of the following classes of
simplicial complexes: matroid complexes, complexes of dimension
one and two,
and Gorenstein complexes of dimension at most four.
The lower bound part of this conjecture is also established for the
face rings of all doubly Cohen--Macaulay complexes whose 1-skeleton's
connectivity does not exceed the codimension plus one as well as for
all $(d-1)$-dimensional $d$-Cohen--Macaulay complexes.
The main ingredient of the proofs is a new interpretation
of the minimal shifts in the resolution of the face ring
$\field[\Delta]$ via the Cohen--Macaulay connectivity of the
skeletons of $\Delta$.
Categories:13F55, 52B05;, 13H15;, 13D02;, 05B35 |
18. CJM 2009 (vol 61 pp. 299)
\v{C}eby\v{s}ev Sets in Hyperspaces over $\mathrm{R}^n$ A set in a metric space is called a \emph{\v{C}eby\v{s}ev set} if
it has a unique ``nearest neighbour'' to each point of the space. In
this paper we generalize this notion, defining a set to be
\emph{\v{C}eby\v{s}ev relative to} another set if every point in the
second set has a unique ``nearest neighbour'' in the first. We are
interested in \v{C}eby\v{s}ev sets in some hyperspaces over $\R$,
endowed with the Hausdorff metric, mainly the hyperspaces of compact
sets, compact convex sets, and strictly convex compact sets.
We present some new classes of \v{C}eby\v{s}ev and relatively
\v{C}eby\v{s}ev sets in various hyperspaces. In particular, we show
that certain nested families of sets are \v{C}eby\v{s}ev. As these
families are characterized purely in terms of containment, without
reference to the semi-linear structure of the underlying metric space,
their properties differ markedly from those of known \v{C}eby\v{s}ev
sets.
Keywords:convex body, strictly convex set, \v{C}eby\v{s}ev set, relative \v{C}eby\v{s}ev set, nested family, strongly nested family, family of translates Categories:41A52, 52A20 |
19. CJM 2008 (vol 60 pp. 3)
Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells Given $r>1$, we consider convex bodies in $\E^n$ which
contain a fixed unit ball, and whose
extreme points are of distance at least $r$ from the centre of
the unit ball, and we investigate how well these
convex bodies approximate the unit ball in terms of volume, surface area and
mean width. As $r$ tends to one, we prove asymptotic formulae
for the error of the approximation, and provide good estimates on
the involved constants depending on the dimension.
Categories:52A27, 52A40 |
20. CJM 2007 (vol 59 pp. 1029)
The Geometry of $L_0$ Suppose that we have the unit Euclidean ball in
$\R^n$ and construct new bodies using three operations --- linear
transformations, closure in the radial metric, and multiplicative
summation defined by $\|x\|_{K+_0L} = \sqrt{\|x\|_K\|x\|_L}.$ We prove
that in dimension $3$ this procedure gives all origin-symmetric convex
bodies, while this is no longer true in dimensions $4$ and higher. We
introduce the concept of embedding of a normed space in $L_0$ that
naturally extends the corresponding properties of $L_p$-spaces with
$p\ne0$, and show that the procedure described above gives exactly the
unit balls of subspaces of $L_0$ in every dimension. We provide
Fourier analytic and geometric characterizations of spaces embedding
in $L_0$, and prove several facts confirming the place of $L_0$ in the
scale of $L_p$-spaces.
Categories:52A20, 52A21, 46B20 |
21. CJM 2007 (vol 59 pp. 1008)
Ideas from Zariski Topology in the Study of Cubical Homology Cubical sets and their homology have been
used in dynamical systems as well as in digital imaging. We take a
fresh look at this topic, following Zariski ideas from
algebraic geometry. The cubical topology is defined to be a
topology in $\R^d$ in which a set is closed if and only if it is
cubical. This concept is a convenient frame for describing a
variety of important features of cubical sets. Separation axioms
which, in general, are not satisfied here, characterize exactly
those pairs of points which we want to distinguish. The noetherian
property guarantees the correctness of the algorithms. Moreover, maps
between cubical sets which are continuous and closed with respect
to the cubical topology are precisely those for whom the homology
map can be defined and computed without grid subdivisions. A
combinatorial version of the Vietoris-Begle theorem is derived. This theorem
plays the central role in an algorithm computing homology
of maps which are continuous
with respect to the Euclidean topology.
Categories:55-04, 52B05, 54C60, 68W05, 68W30, 68U10 |
22. CJM 2006 (vol 58 pp. 820)
Diametrically Maximal and Constant Width Sets in Banach Spaces We characterize diametrically maximal and constant width
sets in $C(K)$, where $K$ is any compact Hausdorff space. These
results are applied to prove that the sum of two diametrically
maximal sets needs not be diametrically maximal, thus solving a
question raised in a paper by Groemer. A~characterization of
diametrically maximal sets in $\ell_1^3$ is also given, providing
a negative answer to Groemer's problem in finite dimensional
spaces. We characterize constant width sets in $c_0(I)$, for
every $I$, and then we establish the connections between the Jung
constant of a Banach space and the existence of constant width
sets with empty interior. Porosity properties of families of sets
of constant width and rotundity properties of diametrically
maximal sets are also investigated. Finally, we present some
results concerning non-reflexive and Hilbert spaces.
Categories:52A05, 46B20 |
23. CJM 2006 (vol 58 pp. 600)
Geometric Study of Minkowski Differences of Plane Convex Bodies In the Euclidean plane $\mathbb{R}^{2}$, we define the Minkowski difference
$\mathcal{K}-\mathcal{L}$ of two arbitrary convex bodies $\mathcal{K}$,
$\mathcal{L}$ as a rectifiable closed curve $\mathcal{H}_{h}\subset \mathbb{R}
^{2}$ that is determined by the difference $h=h_{\mathcal{K}}-h_{\mathcal{L}
} $ of their support functions. This curve $\mathcal{H}_{h}$ is
called the
hedgehog with support function $h$. More generally, the object of hedgehog
theory is to study the Brunn--Minkowski theory in the vector space of
Minkowski differences of arbitrary convex bodies of Euclidean space $\mathbb{R}
^{n+1}$, defined as (possibly singular and self-intersecting) hypersurfaces
of $\mathbb{R}^{n+1}$. Hedgehog theory is useful for: (i)
studying convex bodies by splitting them into a sum in order to reveal their
structure; (ii) converting analytical problems into
geometrical ones by considering certain real functions as support
functions.
The purpose of this paper is to give a detailed study of plane
hedgehogs, which constitute the basis of the theory. In particular:
(i) we study their length measures and solve the extension of the
Christoffel--Minkowski problem to plane hedgehogs; (ii) we
characterize support functions of plane convex bodies among support
functions of plane hedgehogs and support functions of plane hedgehogs among
continuous functions; (iii) we study the mixed area of
hedgehogs in $\mathbb{R}^{2}$ and give an extension of the classical Minkowski
inequality (and thus of the isoperimetric inequality) to hedgehogs.
Categories:52A30, 52A10, 53A04, 52A38, 52A39, 52A40 |
24. CJM 2005 (vol 57 pp. 844)
Petrie Schemes Petrie polygons, especially as they arise in the study of regular
polytopes and Coxeter groups, have been studied by geometers and group
theorists since the early part of the twentieth century. An open
question is the determination of which polyhedra possess Petrie
polygons that are simple closed curves. The current work explores
combinatorial structures in abstract polytopes, called Petrie schemes,
that generalize the notion of a Petrie polygon. It is established
that all of the regular convex polytopes and honeycombs in Euclidean
spaces, as well as all of the Gr\"unbaum--Dress polyhedra, possess
Petrie schemes that are not self-intersecting and thus have Petrie
polygons that are simple closed curves. Partial results are obtained
for several other classes of less symmetric polytopes.
Keywords:Petrie polygon, polyhedron, polytope, abstract polytope, incidence complex, regular polytope, Coxeter group Categories:52B15, 52B05 |
25. CJM 2004 (vol 56 pp. 529)
Asymptotics for Minimal Discrete Riesz Energy on Curves in $\R^d$ We consider the $s$-energy
$$
E(\ZZ_n;s)=\sum_{i \neq j} K(\|z_{i,n}-z_{j,n}\|;s)
$$
for point sets $\ZZ_n=\{ z_{k,n}:k=0,\dots,n\}$ on certain compact sets
$\Ga$ in $\R^d$ having finite one-dimensional Hausdorff measure, where
$$
K(t;s)=
\begin{cases}
t^{-s} ,& \mbox{if } s>0, \\
-\ln t, & \mbox{if } s=0,
\end{cases}
$$
is the Riesz kernel. Asymptotics for the minimum $s$-energy and the
distribution of minimizing sequences of points is studied. In
particular, we prove that, for $s\geq 1$, the minimizing nodes for a
rectifiable Jordan curve $\Ga$ distribute asymptotically uniformly with
respect to arclength as $n\to\infty$.
Keywords:Riesz energy, Minimal discrete energy,, Rectifiable curves, Best-packing on curves Categories:52A40, 31C20 |