1. CJM Online first
 Kaftal, Victor; Ng, Ping Wong; Zhang, Shuang

Strict comparison of positive elements in multiplier algebras
Main result: If a C*algebra $\mathcal{A}$ is simple, $\sigma$unital,
has finitely many extremal traces, and has strict comparison
of positive elements by traces, then its multiplier algebra
$\operatorname{\mathcal{M}}(\mathcal{A})$
also has strict comparison of positive elements by traces. The
same results holds if ``finitely many extremal traces" is replaced
by ``quasicontinuous scale".
A key ingredient in the proof is that every positive element
in the multiplier algebra of an arbitrary $\sigma$unital C*algebra
can be approximated by a bidiagonal series.
An application of strict comparison: If $\mathcal{A}$ is a simple separable
stable C*algebra with real rank zero, stable rank one, and
strict comparison of positive elements by traces, then whether
a positive element is a positive linear combination of projections
is determined by the trace values of its range projection.
Keywords:strict comparison, bidiagonal form, positive combinations Categories:46L05, 46L35, 46L45, 47C15 

2. CJM 2009 (vol 62 pp. 133)
 Makarov, Konstantin A.; Skripka, Anna

Some Applications of the Perturbation Determinant in Finite von Neumann Algebras
In the finite von Neumann algebra setting, we introduce the concept
of a perturbation determinant associated with a pair of selfadjoint
elements $H_0$ and $H$ in the algebra and relate it to the concept of
the de la HarpeSkandalis homotopy invariant determinant associated
with piecewise $C^1$paths of operators joining $H_0$ and $H$. We
obtain an analog of Krein's formula that relates the perturbation
determinant and the spectral shift function and, based on this
relation, we derive subsequently (i) the BirmanSolomyak formula for
a general nonlinear perturbation, (ii) a universality of a spectral
averaging, and (iii) a generalization of the
DixmierFugledeKadison differentiation formula.
Keywords:perturbation determinant, trace formulae, von Neumann algebras Categories:47A55, 47C15, 47A53 

3. CJM 2004 (vol 56 pp. 742)
 Jiang, Chunlan

Similarity Classification of CowenDouglas Operators
Let $\cal H$ be a complex separable Hilbert space
and ${\cal L}({\cal H})$ denote the collection of
bounded linear operators on ${\cal H}$.
An operator $A$ in ${\cal L}({\cal H})$
is said to be strongly irreducible, if
${\cal A}^{\prime}(T)$, the commutant of $A$, has no nontrivial idempotent.
An operator $A$ in ${\cal L}({\cal H})$ is said to a CowenDouglas
operator, if there exists $\Omega$, a connected open subset of
$C$, and $n$, a positive integer, such that
(a) ${\Omega}{\subset}{\sigma}(A)=\{z{\in}C; Az {\text {not invertible}}\};$
(b) $\ran(Az)={\cal H}$, for $z$ in $\Omega$;
(c) $\bigvee_{z{\in}{\Omega}}$\ker$(Az)={\cal H}$ and
(d) $\dim \ker(Az)=n$ for $z$ in $\Omega$.
In the paper, we give a similarity classification of strongly
irreducible CowenDouglas operators by using the $K_0$group of
the commutant algebra as an invariant.
Categories:47A15, 47C15, 13E05, 13F05 
