CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 47B49 ( Transformers, preservers (operators on spaces of operators) )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM Online first

Plevnik, Lucijan; Šemrl, Peter
Maps Preserving Complementarity of Closed Subspaces of a Hilbert Space
Let $\mathcal{H}$ and $\mathcal{K}$ be infinite-dimensional separable Hilbert spaces and ${\rm Lat}\,\mathcal{H}$ the lattice of all closed subspaces oh $\mathcal{H}$. We describe the general form of pairs of bijective maps $\phi , \psi : {\rm Lat}\,\mathcal{H} \to {\rm Lat}\,\mathcal{K}$ having the property that for every pair $U,V \in {\rm Lat}\,\mathcal{H}$ we have $\mathcal{H} = U \oplus V \iff \mathcal{K} = \phi (U) \oplus \psi (V)$. Then we reformulate this theorem as a description of bijective image equality and kernel equality preserving maps acting on bounded linear idempotent operators. Several known structural results for maps on idempotents are easy consequences.

Keywords:Hilbert space, lattice of closed subspaces, complemented subspaces, adjacent subspaces, idempotents
Categories:46B20, 47B49

2. CJM 2013 (vol 65 pp. 783)

Garcés, Jorge J.; Peralta, Antonio M.
Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach triple systems as a concept which extends the notion of generalised homomorphism between Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively. We prove that every generalised triple homomorphism between JB$^*$-triples is automatically continuous. When particularised to C$^*$-algebras, we rediscover one of the main theorems established by B.E. Johnson. We shall also consider generalised triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$-module, proving that every generalised triple derivation from a JB$^*$-triple $E$ into itself or into $E^*$ is automatically continuous.

Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$-algebra, JB$^*$-triple
Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49

3. CJM 2011 (vol 63 pp. 1161)

Neuwirth, Stefan; Ricard, Éric
Transfer of Fourier Multipliers into Schur Multipliers and Sumsets in a Discrete Group
We inspect the relationship between relative Fourier multipliers on noncommutative Lebesgue-Orlicz spaces of a discrete group $\varGamma$ and relative Toeplitz-Schur multipliers on Schatten-von-Neumann-Orlicz classes. Four applications are given: lacunary sets, unconditional Schauder bases for the subspace of a Lebesgue space determined by a given spectrum $\varLambda\subseteq\varGamma$, the norm of the Hilbert transform and the Riesz projection on Schatten-von-Neumann classes with exponent a power of 2, and the norm of Toeplitz Schur multipliers on Schatten-von-Neumann classes with exponent less than 1.

Keywords:Fourier multiplier, Toeplitz Schur multiplier, lacunary set, unconditional approximation property, Hilbert transform, Riesz projection
Categories:47B49, 43A22, 43A46, 46B28

4. CJM 2009 (vol 61 pp. 241)

Azamov, N. A.; Carey, A. L.; Dodds, P. G.; Sukochev, F. A.
Operator Integrals, Spectral Shift, and Spectral Flow
We present a new and simple approach to the theory of multiple operator integrals that applies to unbounded operators affiliated with general \vNa s. For semifinite \vNa s we give applications to the Fr\'echet differentiation of operator functions that sharpen existing results, and establish the Birman--Solomyak representation of the spectral shift function of M.\,G.\,Krein in terms of an average of spectral measures in the type II setting. We also exhibit a surprising connection between the spectral shift function and spectral flow.

Categories:47A56, 47B49, 47A55, 46L51

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/