CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 47A10 ( Spectrum, resolvent )

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM 2007 (vol 59 pp. 393)

Servat, E.
Le splitting pour l'opérateur de Klein--Gordon: une approche heuristique et numérique
Dans cet article on \'etudie la diff\'erence entre les deux premi\`eres valeurs propres, le splitting, d'un op\'erateur de Klein--Gordon semi-classique unidimensionnel, dans le cas d'un potentiel sym\'etrique pr\'esentant un double puits. Dans le cas d'une petite barri\`ere de potentiel, B. Helffer et B. Parisse ont obtenu des r\'esultats analogues \`a ceux existant pour l'op\'erateur de Schr\"odinger. Dans le cas d'une grande barri\`ere de potentiel, on obtient ici des estimations des tranform\'ees de Fourier des fonctions propres qui conduisent \`a une conjecture du splitting. Des calculs num\'eriques viennent appuyer cette conjecture.

Categories:35P05, 34L16, 34E05, 47A10, 47A70

2. CJM 2005 (vol 57 pp. 771)

Schrohe, E.; Seiler, J.
The Resolvent of Closed Extensions of Cone Differential Operators
We study closed extensions $\underline A$ of an elliptic differential operator $A$ on a manifold with conical singularities, acting as an unbounded operator on a weighted $L_p$-space. Under suitable conditions we show that the resolvent $(\lambda-\underline A)^{-1}$ exists in a sector of the complex plane and decays like $1/|\lambda|$ as $|\lambda|\to\infty$. Moreover, we determine the structure of the resolvent with enough precision to guarantee existence and boundedness of imaginary powers of $\underline A$. As an application we treat the Laplace--Beltrami operator for a metric with straight conical degeneracy and describe domains yielding maximal regularity for the Cauchy problem $\dot{u}-\Delta u=f$, $u(0)=0$.

Keywords:Manifolds with conical singularities, resolvent, maximal regularity
Categories:35J70, 47A10, 58J40

3. CJM 2003 (vol 55 pp. 449)

Albeverio, Sergio; Makarov, Konstantin A.; Motovilov, Alexander K.
Graph Subspaces and the Spectral Shift Function
We obtain a new representation for the solution to the operator Sylvester equation in the form of a Stieltjes operator integral. We also formulate new sufficient conditions for the strong solvability of the operator Riccati equation that ensures the existence of reducing graph subspaces for block operator matrices. Next, we extend the concept of the Lifshits-Krein spectral shift function associated with a pair of self-adjoint operators to the case of pairs of admissible operators that are similar to self-adjoint operators. Based on this new concept we express the spectral shift function arising in a perturbation problem for block operator matrices in terms of the angular operators associated with the corresponding perturbed and unperturbed eigenspaces.

Categories:47B44, 47A10, 47A20, 47A40

4. CJM 2001 (vol 53 pp. 756)

Froese, Richard
Correction to: Upper Bounds for the Resonance Counting Function of Schrödinger Operators in Odd Dimensions
The proof of Lemma~3.4 in [F] relies on the incorrect equality $\mu_j (AB) = \mu_j (BA)$ for singular values (for a counterexample, see [S, p.~4]). Thus, Theorem~3.1 as stated has not been proven. However, with minor changes, we can obtain a bound for the counting function in terms of the growth of the Fourier transform of $|V|$.

Categories:47A10, 47A40, 81U05

5. CJM 2000 (vol 52 pp. 197)

Radjavi, Heydar
Sublinearity and Other Spectral Conditions on a Semigroup
Subadditivity, sublinearity, submultiplicativity, and other conditions are considered for spectra of pairs of operators on a Hilbert space. Sublinearity, for example, is a weakening of the well-known property~$L$ and means $\sigma(A+\lambda B) \subseteq \sigma(A) + \lambda \sigma(B)$ for all scalars $\lambda$. The effect of these conditions is examined on commutativity, reducibility, and triangularizability of multiplicative semigroups of operators. A sample result is that sublinearity of spectra implies simultaneous triangularizability for a semigroup of compact operators.

Categories:47A15, 47D03, 15A30, 20A20, 47A10, 47B10

6. CJM 1998 (vol 50 pp. 538)

Froese, Richard
Upper bounds for the resonance counting function of Schrödinger operators in odd dimensions
The purpose of this note is to provide a simple proof of the sharp polynomial upper bound for the resonance counting function of a Schr\"odinger operator in odd dimensions. At the same time we generalize the result to the class of super-exponentially decreasing potentials.

Categories:47A10, 47A40, 81U05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/