Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 47 ( Operator theory )

  Expand all        Collapse all Results 26 - 50 of 80

26. CJM 2010 (vol 62 pp. 1419)

Yang, Dachun; Yang, Dongyong
BMO-Estimates for Maximal Operators via Approximations of the Identity with Non-Doubling Measures
Let $\mu$ be a nonnegative Radon measure on $\mathbb{R}^d$ that satisfies the growth condition that there exist constants $C_0>0$ and $n\in(0,d]$ such that for all $x\in\mathbb{R}^d$ and $r>0$, ${\mu(B(x,\,r))\le C_0r^n}$, where $B(x,r)$ is the open ball centered at $x$ and having radius $r$. In this paper, the authors prove that if $f$ belongs to the $\textrm {BMO}$-type space $\textrm{RBMO}(\mu)$ of Tolsa, then the homogeneous maximal function $\dot{\mathcal{M}}_S(f)$ (when $\mathbb{R}^d$ is not an initial cube) and the inhomogeneous maximal function $\mathcal{M}_S(f)$ (when $\mathbb{R}^d$ is an initial cube) associated with a given approximation of the identity $S$ of Tolsa are either infinite everywhere or finite almost everywhere, and in the latter case, $\dot{\mathcal{M}}_S$ and $\mathcal{M}_S$ are bounded from $\textrm{RBMO}(\mu)$ to the $\textrm {BLO}$-type space $\textrm{RBLO}(\mu)$. The authors also prove that the inhomogeneous maximal operator $\mathcal{M}_S$ is bounded from the local $\textrm {BMO}$-type space $\textrm{rbmo}(\mu)$ to the local $\textrm {BLO}$-type space $\textrm{rblo}(\mu)$.

Keywords:Non-doubling measure, maximal operator, approximation of the identity, RBMO(mu), RBLO(mu), rbmo(mu), rblo(mu)
Categories:42B25, 42B30, 47A30, 43A99

27. CJM 2010 (vol 62 pp. 889)

Xia, Jingbo
Singular Integral Operators and Essential Commutativity on the Sphere
Let ${\mathcal T}$ be the $C^\ast $-algebra generated by the Toeplitz operators $\{T_\varphi : \varphi \in L^\infty (S,d\sigma )\}$ on the Hardy space $H^2(S)$ of the unit sphere in $\mathbf{C}^n$. It is well known that ${\mathcal T}$ is contained in the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$. We show that the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$ is strictly larger than ${\mathcal T}$.

Categories:32A55, 46L05, 47L80

28. CJM 2009 (vol 62 pp. 74)

Ducrot, Arnaud; Liu, Zhihua; Magal, Pierre
Projectors on the Generalized Eigenspaces for Neutral Functional Differential Equations in $L^{p}$ Spaces
We present the explicit formulas for the projectors on the generalized eigenspaces associated with some eigenvalues for linear neutral functional differential equations (NFDE) in $L^{p}$ spaces by using integrated semigroup theory. The analysis is based on the main result established elsewhere by the authors and results by Magal and Ruan on non-densely defined Cauchy problem. We formulate the NFDE as a non-densely defined Cauchy problem and obtain some spectral properties from which we then derive explicit formulas for the projectors on the generalized eigenspaces associated with some eigenvalues. Such explicit formulas are important in studying bifurcations in some semi-linear problems.

Keywords:neutral functional differential equations, semi-linear problem, integrated semigroup, spectrum, projectors
Categories:34K05, 35K57, 47A56, 47H20

29. CJM 2009 (vol 62 pp. 415)

Sun, Shunhua; Zheng, Dechao; Zhong, Changyong
Classification of Reducing Subspaces of a Class of Multiplication Operators on the Bergman Space via the Hardy Space of the Bidisk
In this paper we obtain a complete description of nontrivial minimal reducing subspaces of the multiplication operator by a Blaschke product with four zeros on the Bergman space of the unit disk via the Hardy space of the bidisk.

Categories:47B35, 47B38

30. CJM 2009 (vol 62 pp. 439)

Sundhäll, Marcus; Tchoundja, Edgar
On Hankel Forms of Higher Weights: The Case of Hardy Spaces
In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by Sundhäll for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.

Keywords:Hankel forms, Schatten—von Neumann classes, Bergman spaces, Hardy spaces, Besov spaces, transvectant, unitary representations, Möbius group
Categories:32A25, 32A35, 32A37, 47B35

31. CJM 2009 (vol 62 pp. 305)

Hua, He; Yunbai, Dong; Xianzhou, Guo
Approximation and Similarity Classification of Stably Finitely Strongly Irreducible Decomposable Operators
Let $\mathcal H$ be a complex separable Hilbert space and ${\mathcal L}({\mathcal H})$ denote the collection of bounded linear operators on ${\mathcal H}$. In this paper, we show that for any operator $A\in{\mathcal L}({\mathcal H})$, there exists a stably finitely (SI) decomposable operator $A_\epsilon$, such that $\|A-A_{\epsilon}\|<\epsilon$ and ${\mathcal{\mathcal A}'(A_{\epsilon})}/\operatorname{rad} {{\mathcal A}'(A_{\epsilon})}$ is commutative, where $\operatorname{rad}{{\mathcal A}'(A_{\epsilon})}$ is the Jacobson radical of ${{\mathcal A}'(A_{\epsilon})}$. Moreover, we give a similarity classification of the stably finitely decomposable operators that generalizes the result on similarity classification of Cowen-Douglas operators given by C. L. Jiang.

Keywords:$K_{0}$-group, strongly irreducible decomposition, Cowen—Douglas operators, commutant algebra, similarity classification
Categories:47A05, 47A55, 46H20

32. CJM 2009 (vol 62 pp. 242)

Azagra, Daniel; Fry, Robb
A Second Order Smooth Variational Principle on Riemannian Manifolds
We establish a second order smooth variational principle valid for functions defined on (possibly infinite-dimensional) Riemannian manifolds which are uniformly locally convex and have a strictly positive injectivity radius and bounded sectional curvature.

Keywords:smooth variational principle, Riemannian manifold
Categories:58E30, 49J52, 46T05, 47J30, 58B20

33. CJM 2009 (vol 62 pp. 133)

Makarov, Konstantin A.; Skripka, Anna
Some Applications of the Perturbation Determinant in Finite von Neumann Algebras
In the finite von Neumann algebra setting, we introduce the concept of a perturbation determinant associated with a pair of self-adjoint elements $H_0$ and $H$ in the algebra and relate it to the concept of the de la Harpe--Skandalis homotopy invariant determinant associated with piecewise $C^1$-paths of operators joining $H_0$ and $H$. We obtain an analog of Krein's formula that relates the perturbation determinant and the spectral shift function and, based on this relation, we derive subsequently (i) the Birman--Solomyak formula for a general non-linear perturbation, (ii) a universality of a spectral averaging, and (iii) a generalization of the Dixmier--Fuglede--Kadison differentiation formula.

Keywords:perturbation determinant, trace formulae, von Neumann algebras
Categories:47A55, 47C15, 47A53

34. CJM 2009 (vol 61 pp. 1239)

Davidson, Kenneth R.; Yang, Dilian
Periodicity in Rank 2 Graph Algebras
Kumjian and Pask introduced an aperiodicity condition for higher rank graphs. We present a detailed analysis of when this occurs in certain rank 2 graphs. When the algebra is aperiodic, we give another proof of the simplicity of $\mathrm{C}^*(\mathbb{F}^+_{\theta})$. The periodic $\mathrm{C}^*$-algebras are characterized, and it is shown that $\mathrm{C}^*(\mathbb{F}^+_{\theta}) \simeq \mathrm{C}(\mathbb{T})\otimes\mathfrak{A}$ where $\mathfrak{A}$ is a simple $\mathrm{C}^*$-algebra.

Keywords:higher rank graph, aperiodicity condition, simple $\mathrm{C}^*$-algebra, expectation
Categories:47L55, 47L30, 47L75, 46L05

35. CJM 2009 (vol 61 pp. 282)

Bouya, Brahim
Closed Ideals in Some Algebras of Analytic Functions
We obtain a complete description of closed ideals of the algebra $\cD\cap \cL$, $0<\alpha\leq\frac{1}{2}$, where $\cD$ is the Dirichlet space and $\cL$ is the algebra of analytic functions satisfying the Lipschitz condition of order $\alpha$.

Categories:46E20, 30H05, 47A15

36. CJM 2009 (vol 61 pp. 241)

Azamov, N. A.; Carey, A. L.; Dodds, P. G.; Sukochev, F. A.
Operator Integrals, Spectral Shift, and Spectral Flow
We present a new and simple approach to the theory of multiple operator integrals that applies to unbounded operators affiliated with general \vNa s. For semifinite \vNa s we give applications to the Fr\'echet differentiation of operator functions that sharpen existing results, and establish the Birman--Solomyak representation of the spectral shift function of M.\,G.\,Krein in terms of an average of spectral measures in the type II setting. We also exhibit a surprising connection between the spectral shift function and spectral flow.

Categories:47A56, 47B49, 47A55, 46L51

37. CJM 2009 (vol 61 pp. 50)

Chen, Huaihui; Gauthier, Paul
Composition operators on $\mu$-Bloch spaces
Given a positive continuous function $\mu$ on the interval $0
Categories:47B33, 32A70, 46E15

38. CJM 2009 (vol 61 pp. 190)

Lu, Yufeng; Shang, Shuxia
Bounded Hankel Products on the Bergman Space of the Polydisk
We consider the problem of determining for which square integrable functions $f$ and $g$ on the polydisk the densely defined Hankel product $H_{f}H_g^\ast$ is bounded on the Bergman space of the polydisk. Furthermore, we obtain similar results for the mixed Haplitz products $H_{g}T_{\bar{f}}$ and $T_{f}H_{g}^{*}$, where $f$ and $g$ are square integrable on the polydisk and $f$ is analytic.

Keywords:Toeplitz operator, Hankel operator, Haplitz products, Bergman space, polydisk
Categories:47B35, 47B47

39. CJM 2008 (vol 60 pp. 1010)

Galé, José E.; Miana, Pedro J.
$H^\infty$ Functional Calculus and Mikhlin-Type Multiplier Conditions
Let $T$ be a sectorial operator. It is known that the existence of a bounded (suitably scaled) $H^\infty$ calculus for $T$, on every sector containing the positive half-line, is equivalent to the existence of a bounded functional calculus on the Besov algebra $\Lambda_{\infty,1}^\alpha(\R^+)$. Such an algebra includes functions defined by Mikhlin-type conditions and so the Besov calculus can be seen as a result on multipliers for $T$. In this paper, we use fractional derivation to analyse in detail the relationship between $\Lambda_{\infty,1}^\alpha$ and Banach algebras of Mikhlin-type. As a result, we obtain a new version of the quoted equivalence.

Keywords:functional calculus, fractional calculus, Mikhlin multipliers, analytic semigroups, unbounded operators, quasimultipliers
Categories:47A60, 47D03, 46J15, 26A33, 47L60, 47B48, 43A22

40. CJM 2008 (vol 60 pp. 758)

Bercovici, H.; Foias, C.; Pearcy, C.
On the Hyperinvariant Subspace Problem. IV
This paper is a continuation of three recent articles concerning the structure of hyperinvariant subspace lattices of operators on a (separable, infinite dimensional) Hilbert space $\mathcal{H}$. We show herein, in particular, that there exists a ``universal'' fixed block-diagonal operator $B$ on $\mathcal{H}$ such that if $\varepsilon>0$ is given and $T$ is an arbitrary nonalgebraic operator on $\mathcal{H}$, then there exists a compact operator $K$ of norm less than $\varepsilon$ such that (i) $\Hlat(T)$ is isomorphic as a complete lattice to $\Hlat(B+K)$ and (ii) $B+K$ is a quasidiagonal, $C_{00}$, (BCP)-operator with spectrum and left essential spectrum the unit disc. In the last four sections of the paper, we investigate the possible structures of the hyperlattice of an arbitrary algebraic operator. Contrary to existing conjectures, $\Hlat(T)$ need not be generated by the ranges and kernels of the powers of $T$ in the nilpotent case. In fact, this lattice can be infinite.


41. CJM 2008 (vol 60 pp. 520)

Chen, Chang-Pao; Huang, Hao-Wei; Shen, Chun-Yen
Matrices Whose Norms Are Determined by Their Actions on Decreasing Sequences
Let $A=(a_{j,k})_{j,k \ge 1}$ be a non-negative matrix. In this paper, we characterize those $A$ for which $\|A\|_{E, F}$ are determined by their actions on decreasing sequences, where $E$ and $F$ are suitable normed Riesz spaces of sequences. In particular, our results can apply to the following spaces: $\ell_p$, $d(w,p)$, and $\ell_p(w)$. The results established here generalize ones given by Bennett; Chen, Luor, and Ou; Jameson; and Jameson and Lashkaripour.

Keywords:norms of matrices, normed Riesz spaces, weighted mean matrices, Nörlund mean matrices, summability matrices, matrices with row decreasing
Categories:15A60, 40G05, 47A30, 47B37, 46B42

42. CJM 2007 (vol 59 pp. 1207)

Bu, Shangquan; Le, Christian
$H^p$-Maximal Regularity and Operator Valued Multipliers on Hardy Spaces
We consider maximal regularity in the $H^p$ sense for the Cauchy problem $u'(t) + Au(t) = f(t)\ (t\in \R)$, where $A$ is a closed operator on a Banach space $X$ and $f$ is an $X$-valued function defined on $\R$. We prove that if $X$ is an AUMD Banach space, then $A$ satisfies $H^p$-maximal regularity if and only if $A$ is Rademacher sectorial of type $<\frac{\pi}{2}$. Moreover we find an operator $A$ with $H^p$-maximal regularity that does not have the classical $L^p$-maximal regularity. We prove a related Mikhlin type theorem for operator valued Fourier multipliers on Hardy spaces $H^p(\R;X)$, in the case when $X$ is an AUMD Banach space.

Keywords:$L^p$-maximal regularity, $H^p$-maximal regularity, Rademacher boundedness
Categories:42B30, 47D06

43. CJM 2007 (vol 59 pp. 966)

Forrest, Brian E.; Runde, Volker; Spronk, Nico
Operator Amenability of the Fourier Algebra in the $\cb$-Multiplier Norm
Let $G$ be a locally compact group, and let $A_{\cb}(G)$ denote the closure of $A(G)$, the Fourier algebra of $G$, in the space of completely bounded multipliers of $A(G)$. If $G$ is a weakly amenable, discrete group such that $\cstar(G)$ is residually finite-dimensional, we show that $A_{\cb}(G)$ is operator amenable. In particular, $A_{\cb}(\free_2)$ is operator amenable even though $\free_2$, the free group in two generators, is not an amenable group. Moreover, we show that if $G$ is a discrete group such that $A_{\cb}(G)$ is operator amenable, a closed ideal of $A(G)$ is weakly completely complemented in $A(G)$ if and only if it has an approximate identity bounded in the $\cb$-multiplier norm.

Keywords:$\cb$-multiplier norm, Fourier algebra, operator amenability, weak amenability
Categories:43A22, 43A30, 46H25, 46J10, 46J40, 46L07, 47L25

44. CJM 2007 (vol 59 pp. 638)

MacDonald, Gordon W.
Distance from Idempotents to Nilpotents
We give bounds on the distance from a non-zero idempotent to the set of nilpotents in the set of $n\times n$ matrices in terms of the norm of the idempotent. We construct explicit idempotents and nilpotents which achieve these distances, and determine exact distances in some special cases.

Keywords:operator, matrix, nilpotent, idempotent, projection
Categories:47A15, 47D03, 15A30

45. CJM 2007 (vol 59 pp. 614)

Labuschagne, C. C. A.
Preduals and Nuclear Operators Associated with Bounded, $p$-Convex, $p$-Concave and Positive $p$-Summing Operators
We use Krivine's form of the Grothendieck inequality to renorm the space of bounded linear maps acting between Banach lattices. We construct preduals and describe the nuclear operators associated with these preduals for this renormed space of bounded operators as well as for the spaces of $p$-convex, $p$-concave and positive $p$-summing operators acting between Banach lattices and Banach spaces. The nuclear operators obtained are described in terms of factorizations through classical Banach spaces via positive operators.

Keywords:$p$-convex operator, $p$-concave operator, $p$-summing operator, Banach space, Banach lattice, nuclear operator, sequence space
Categories:46B28, 47B10, 46B42, 46B45

46. CJM 2007 (vol 59 pp. 393)

Servat, E.
Le splitting pour l'opérateur de Klein--Gordon: une approche heuristique et numérique
Dans cet article on \'etudie la diff\'erence entre les deux premi\`eres valeurs propres, le splitting, d'un op\'erateur de Klein--Gordon semi-classique unidimensionnel, dans le cas d'un potentiel sym\'etrique pr\'esentant un double puits. Dans le cas d'une petite barri\`ere de potentiel, B. Helffer et B. Parisse ont obtenu des r\'esultats analogues \`a ceux existant pour l'op\'erateur de Schr\"odinger. Dans le cas d'une grande barri\`ere de potentiel, on obtient ici des estimations des tranform\'ees de Fourier des fonctions propres qui conduisent \`a une conjecture du splitting. Des calculs num\'eriques viennent appuyer cette conjecture.

Categories:35P05, 34L16, 34E05, 47A10, 47A70

47. CJM 2006 (vol 58 pp. 859)

Read, C. J.
Nonstandard Ideals from Nonstandard Dual Pairs for $L^1(\omega)$ and $l^1(\omega)$
The Banach convolution algebras $l^1(\omega)$ and their continuous counterparts $L^1(\bR^+,\omega)$ are much studied, because (when the submultiplicative weight function $\omega$ is radical) they are pretty much the prototypic examples of commutative radical Banach algebras. In cases of ``nice'' weights $\omega$, the only closed ideals they have are the obvious, or ``standard'', ideals. But in the general case, a brilliant but very difficult paper of Marc Thomas shows that nonstandard ideals exist in $l^1(\omega)$. His proof was successfully exported to the continuous case $L^1(\bR^+,\omega)$ by Dales and McClure, but remained difficult. In this paper we first present a small improvement: a new and easier proof of the existence of nonstandard ideals in $l^1(\omega)$ and $L^1(\bR^+,\omega)$. The new proof is based on the idea of a ``nonstandard dual pair'' which we introduce. We are then able to make a much larger improvement: we find nonstandard ideals in $L^1(\bR^+,\omega)$ containing functions whose supports extend all the way down to zero in $\bR^+$, thereby solving what has become a notorious problem in the area.

Keywords:Banach algebra, radical, ideal, standard ideal, semigroup
Categories:46J45, 46J20, 47A15

48. CJM 2006 (vol 58 pp. 548)

Galanopoulos, P.; Papadimitrakis, M.
Hausdorff and Quasi-Hausdorff Matrices on Spaces of Analytic Functions
We consider Hausdorff and quasi-Hausdorff matrices as operators on classical spaces of analytic functions such as the Hardy and the Bergman spaces, the Dirichlet space, the Bloch spaces and $\BMOA$. When the generating sequence of the matrix is the moment sequence of a measure $\mu$, we find the conditions on $\mu$ which are equivalent to the boundedness of the matrix on the various spaces.

Categories:47B38, 46E15, 40G05, 42A20

49. CJM 2005 (vol 57 pp. 1249)

Lindström, Mikael; Saksman, Eero; Tylli, Hans-Olav
Strictly Singular and Cosingular Multiplications
Let $L(X)$ be the space of bounded linear operators on the Banach space $X$. We study the strict singularity andcosingularity of the two-sided multiplication operators $S \mapsto ASB$ on $L(X)$, where $A,B \in L(X)$ are fixed bounded operators and $X$ is a classical Banach space. Let $1
Categories:47B47, 46B28

50. CJM 2005 (vol 57 pp. 771)

Schrohe, E.; Seiler, J.
The Resolvent of Closed Extensions of Cone Differential Operators
We study closed extensions $\underline A$ of an elliptic differential operator $A$ on a manifold with conical singularities, acting as an unbounded operator on a weighted $L_p$-space. Under suitable conditions we show that the resolvent $(\lambda-\underline A)^{-1}$ exists in a sector of the complex plane and decays like $1/|\lambda|$ as $|\lambda|\to\infty$. Moreover, we determine the structure of the resolvent with enough precision to guarantee existence and boundedness of imaginary powers of $\underline A$. As an application we treat the Laplace--Beltrami operator for a metric with straight conical degeneracy and describe domains yielding maximal regularity for the Cauchy problem $\dot{u}-\Delta u=f$, $u(0)=0$.

Keywords:Manifolds with conical singularities, resolvent, maximal regularity
Categories:35J70, 47A10, 58J40
   1 2 3 4    

© Canadian Mathematical Society, 2016 :