Expand all Collapse all  Results 26  50 of 70 
26. CJM 2009 (vol 61 pp. 241)
Operator Integrals, Spectral Shift, and Spectral Flow We present a new and simple approach to the theory of multiple
operator integrals that applies to unbounded operators affiliated with general \vNa s.
For semifinite \vNa s we give applications
to the Fr\'echet differentiation of operator functions that sharpen existing results,
and establish the BirmanSolomyak representation of the spectral
shift function of M.\,G.\,Krein
in terms of an average of spectral measures in the type II setting.
We also exhibit a surprising connection between the spectral shift
function and spectral flow.
Categories:47A56, 47B49, 47A55, 46L51 
27. CJM 2009 (vol 61 pp. 50)
Composition operators on $\mu$Bloch spaces Given a positive continuous function $\mu$ on the
interval $0 Categories:47B33, 32A70, 46E15 
28. CJM 2009 (vol 61 pp. 190)
Bounded Hankel Products on the Bergman Space of the Polydisk We consider the problem of determining for which square integrable
functions $f$ and $g$ on the polydisk the densely defined Hankel
product $H_{f}H_g^\ast$ is bounded on the Bergman space of the
polydisk. Furthermore, we obtain similar results for the mixed
Haplitz products $H_{g}T_{\bar{f}}$ and $T_{f}H_{g}^{*}$, where $f$
and $g$ are square integrable on the polydisk and $f$ is analytic.
Keywords:Toeplitz operator, Hankel operator, Haplitz products, Bergman space, polydisk Categories:47B35, 47B47 
29. CJM 2008 (vol 60 pp. 1010)
$H^\infty$ Functional Calculus and MikhlinType Multiplier Conditions Let $T$ be a sectorial operator. It is known that the existence of a
bounded (suitably scaled) $H^\infty$ calculus for $T$, on every
sector containing the positive halfline, is equivalent to the
existence of a bounded functional calculus on the Besov algebra
$\Lambda_{\infty,1}^\alpha(\R^+)$. Such an algebra
includes functions defined by Mikhlintype conditions and so the
Besov calculus can be seen as a result on multipliers for $T$. In
this paper, we use fractional derivation to analyse in detail the
relationship between $\Lambda_{\infty,1}^\alpha$ and Banach algebras
of Mikhlintype. As a result, we obtain a new version of the quoted
equivalence.
Keywords:functional calculus, fractional calculus, Mikhlin multipliers, analytic semigroups, unbounded operators, quasimultipliers Categories:47A60, 47D03, 46J15, 26A33, 47L60, 47B48, 43A22 
30. CJM 2008 (vol 60 pp. 758)
On the Hyperinvariant Subspace Problem. IV This paper is a continuation of three recent articles
concerning the structure of hyperinvariant
subspace lattices of operators on a (separable, infinite dimensional)
Hilbert space $\mathcal{H}$. We show herein, in particular, that
there exists a ``universal'' fixed blockdiagonal operator $B$ on
$\mathcal{H}$ such that if $\varepsilon>0$ is given and $T$ is
an arbitrary nonalgebraic operator on $\mathcal{H}$, then there exists
a compact operator $K$ of norm less than $\varepsilon$ such that
(i) $\Hlat(T)$ is isomorphic as a complete lattice to $\Hlat(B+K)$
and (ii) $B+K$ is a quasidiagonal, $C_{00}$, (BCP)operator with
spectrum and left essential spectrum the unit disc. In the last four
sections of the paper, we investigate the possible structures of the
hyperlattice of an arbitrary algebraic operator. Contrary to existing
conjectures, $\Hlat(T)$ need not be generated by the ranges and kernels
of the powers of $T$ in the nilpotent case. In fact, this lattice
can be infinite.
Category:47A15 
31. CJM 2008 (vol 60 pp. 520)
Matrices Whose Norms Are Determined by Their Actions on Decreasing Sequences Let $A=(a_{j,k})_{j,k \ge 1}$ be a nonnegative matrix. In this
paper, we characterize those $A$ for which $\A\_{E, F}$ are
determined by their actions on decreasing sequences, where $E$ and
$F$ are suitable normed Riesz spaces of sequences. In particular,
our results can apply to the following spaces: $\ell_p$, $d(w,p)$,
and $\ell_p(w)$. The results established here generalize
ones given by Bennett; Chen, Luor, and Ou; Jameson; and
Jameson and Lashkaripour.
Keywords:norms of matrices, normed Riesz spaces, weighted mean matrices, NÃ¶rlund mean matrices, summability matrices, matrices with row decreasing Categories:15A60, 40G05, 47A30, 47B37, 46B42 
32. CJM 2007 (vol 59 pp. 1207)
$H^p$Maximal Regularity and Operator Valued Multipliers on Hardy Spaces We consider maximal regularity in the $H^p$ sense for the Cauchy
problem $u'(t) + Au(t) = f(t)\ (t\in \R)$, where $A$ is a closed
operator on a Banach space $X$ and $f$ is an $X$valued function
defined on $\R$. We prove that if $X$ is an AUMD Banach space,
then $A$ satisfies $H^p$maximal regularity if and only if $A$ is
Rademacher sectorial of type $<\frac{\pi}{2}$. Moreover we find an
operator $A$ with $H^p$maximal regularity that does not have the
classical $L^p$maximal regularity. We prove a related Mikhlin
type theorem for operator valued Fourier multipliers on Hardy
spaces $H^p(\R;X)$, in the case when $X$ is an AUMD Banach space.
Keywords:$L^p$maximal regularity, $H^p$maximal regularity, Rademacher boundedness Categories:42B30, 47D06 
33. CJM 2007 (vol 59 pp. 966)
Operator Amenability of the Fourier Algebra in the $\cb$Multiplier Norm Let $G$ be a locally compact group, and let $A_{\cb}(G)$ denote the
closure of $A(G)$, the Fourier algebra of $G$, in the space of completely
bounded multipliers of $A(G)$. If $G$ is a weakly amenable, discrete group
such that $\cstar(G)$ is residually finitedimensional, we show that
$A_{\cb}(G)$ is operator amenable. In particular,
$A_{\cb}(\free_2)$ is operator amenable even though $\free_2$, the free
group in two generators, is not an amenable group. Moreover, we show that
if $G$ is a discrete group such that $A_{\cb}(G)$ is operator amenable,
a closed ideal of $A(G)$ is weakly completely complemented in $A(G)$
if and only if it has an approximate identity bounded in the $\cb$multiplier
norm.
Keywords:$\cb$multiplier norm, Fourier algebra, operator amenability, weak amenability Categories:43A22, 43A30, 46H25, 46J10, 46J40, 46L07, 47L25 
34. CJM 2007 (vol 59 pp. 614)
Preduals and Nuclear Operators Associated with Bounded, $p$Convex, $p$Concave and Positive $p$Summing Operators 
Preduals and Nuclear Operators Associated with Bounded, $p$Convex, $p$Concave and Positive $p$Summing Operators We use Krivine's form of the Grothendieck inequality
to renorm the space of bounded linear maps acting between Banach
lattices. We
construct preduals and describe the nuclear operators
associated with these preduals for this renormed space
of bounded operators as well as for
the spaces of $p$convex,
$p$concave and positive $p$summing operators acting
between Banach lattices and Banach spaces.
The nuclear operators obtained are described in
terms of factorizations through
classical Banach spaces via positive operators.
Keywords:$p$convex operator, $p$concave operator, $p$summing operator, Banach space, Banach lattice, nuclear operator, sequence space Categories:46B28, 47B10, 46B42, 46B45 
35. CJM 2007 (vol 59 pp. 638)
Distance from Idempotents to Nilpotents We give bounds on the distance from a nonzero idempotent to the
set of nilpotents in the set of $n\times n$ matrices in terms of
the norm of the idempotent. We construct explicit idempotents and
nilpotents which achieve these distances, and determine exact
distances in some special cases.
Keywords:operator, matrix, nilpotent, idempotent, projection Categories:47A15, 47D03, 15A30 
36. CJM 2007 (vol 59 pp. 393)
Le splitting pour l'opÃ©rateur de KleinGordon: une approche heuristique et numÃ©rique Dans cet article on \'etudie la diff\'erence entre les deux
premi\`eres valeurs propres, le splitting, d'un op\'erateur de
KleinGordon semiclassique unidimensionnel, dans le cas d'un
potentiel sym\'etrique pr\'esentant un double puits. Dans le cas d'une
petite barri\`ere de potentiel, B. Helffer et B. Parisse ont obtenu
des r\'esultats analogues \`a ceux existant pour l'op\'erateur de
Schr\"odinger. Dans le cas d'une grande barri\`ere de potentiel, on
obtient ici des estimations des tranform\'ees de Fourier des fonctions
propres qui conduisent \`a une conjecture du splitting. Des calculs
num\'eriques viennent appuyer cette conjecture.
Categories:35P05, 34L16, 34E05, 47A10, 47A70 
37. CJM 2006 (vol 58 pp. 859)
Nonstandard Ideals from Nonstandard Dual Pairs for $L^1(\omega)$ and $l^1(\omega)$ The Banach convolution algebras $l^1(\omega)$
and their continuous counterparts $L^1(\bR^+,\omega)$
are much
studied, because (when the submultiplicative weight function
$\omega$ is radical) they are pretty much the prototypic examples
of commutative radical Banach algebras. In cases of ``nice''
weights $\omega$, the only closed ideals they have are the obvious,
or ``standard'', ideals. But in the
general case, a brilliant but very difficult paper of Marc Thomas
shows that nonstandard ideals exist in $l^1(\omega)$. His
proof was successfully exported to the continuous case
$L^1(\bR^+,\omega)$ by Dales and McClure, but remained
difficult. In this paper we first present a small improvement: a
new and easier proof of the existence of nonstandard ideals in
$l^1(\omega)$ and $L^1(\bR^+,\omega)$. The new proof is based on
the idea of a ``nonstandard dual pair'' which we introduce.
We are then able to make a much larger improvement: we
find nonstandard ideals in $L^1(\bR^+,\omega)$ containing functions
whose supports extend all the way down to zero in $\bR^+$, thereby solving
what has become a notorious problem in the area.
Keywords:Banach algebra, radical, ideal, standard ideal, semigroup Categories:46J45, 46J20, 47A15 
38. CJM 2006 (vol 58 pp. 548)
Hausdorff and QuasiHausdorff Matrices on Spaces of Analytic Functions We consider Hausdorff and quasiHausdorff matrices as operators
on classical spaces of analytic functions such as the Hardy and
the Bergman spaces, the Dirichlet space, the Bloch spaces and $\BMOA$. When the generating
sequence of the matrix is the moment sequence of a measure $\mu$,
we find the conditions on $\mu$ which are equivalent to the boundedness
of the matrix on the various spaces.
Categories:47B38, 46E15, 40G05, 42A20 
39. CJM 2005 (vol 57 pp. 1249)
Strictly Singular and Cosingular Multiplications Let $L(X)$ be the space of bounded linear operators on the Banach space $X$.
We study the strict singularity andcosingularity of the twosided multiplication
operators $S \mapsto ASB$ on $L(X)$, where $A,B \in L(X)$ are fixed bounded
operators and $X$ is a classical Banach space. Let $1

40. CJM 2005 (vol 57 pp. 771)
The Resolvent of Closed Extensions of Cone Differential Operators We study closed extensions $\underline A$ of
an elliptic differential operator $A$ on a manifold with conical
singularities, acting as an unbounded operator on a weighted $L_p$space.
Under suitable conditions we show that the resolvent
$(\lambda\underline A)^{1}$ exists
in a sector of the complex plane and decays like $1/\lambda$ as
$\lambda\to\infty$. Moreover, we determine the structure of the resolvent
with enough precision to guarantee existence and boundedness of imaginary
powers of $\underline A$.
As an application we treat the LaplaceBeltrami operator for a metric with
straight conical degeneracy and describe domains yielding
maximal regularity for the Cauchy problem $\dot{u}\Delta u=f$, $u(0)=0$.
Keywords:Manifolds with conical singularities, resolvent, maximal regularity Categories:35J70, 47A10, 58J40 
41. CJM 2005 (vol 57 pp. 506)
Reverse Hypercontractivity for Subharmonic Functions Contractivity and hypercontractivity properties of semigroups
are now well understood when the generator, $A$, is a Dirichlet form
operator.
It has been shown that in some holomorphic function spaces the
semigroup operators, $e^{tA}$, can be bounded {\it below} from
$L^p$ to $L^q$ when $p,q$ and $t$ are suitably related.
We will show that such lower boundedness occurs also in spaces
of subharmonic functions.
Keywords:Reverse hypercontractivity, subharmonic Categories:58J35, 47D03, 47D07, 32Q99, 60J35 
42. CJM 2005 (vol 57 pp. 225)
Unbounded Fredholm Operators and Spectral Flow We study the gap (= ``projection norm'' = ``graph distance'') topology
of the space of all (not necessarily bounded) selfadjoint Fredholm
operators in a separable Hilbert space by the Cayley transform and
direct methods. In particular, we show the surprising result that
this space is connected in contrast to the bounded case. Moreover, we
present a rigorous definition of spectral flow of a path of such
operators (actually alternative but mutually equivalent definitions)
and prove the homotopy invariance. As an example, we discuss operator
curves on manifolds with boundary.
Categories:58J30, 47A53, 19K56, 58J32 
43. CJM 2005 (vol 57 pp. 61)
On Operators with Spectral Square but without Resolvent Points Decompositions of spectral type are
obtained for closed Hilbert space operators with empty resolvent
set, but whose square has closure which is spectral. Krein space
situations are also discussed.
Keywords:unbounded operators, closed operators,, spectral resolution, indefinite metric Categories:47A05, 47A15, 47B40, 47B50, 46C20 
44. CJM 2004 (vol 56 pp. 742)
Similarity Classification of CowenDouglas Operators Let $\cal H$ be a complex separable Hilbert space
and ${\cal L}({\cal H})$ denote the collection of
bounded linear operators on ${\cal H}$.
An operator $A$ in ${\cal L}({\cal H})$
is said to be strongly irreducible, if
${\cal A}^{\prime}(T)$, the commutant of $A$, has no nontrivial idempotent.
An operator $A$ in ${\cal L}({\cal H})$ is said to a CowenDouglas
operator, if there exists $\Omega$, a connected open subset of
$C$, and $n$, a positive integer, such that
(a) ${\Omega}{\subset}{\sigma}(A)=\{z{\in}C; Az {\text {not invertible}}\};$
(b) $\ran(Az)={\cal H}$, for $z$ in $\Omega$;
(c) $\bigvee_{z{\in}{\Omega}}$\ker$(Az)={\cal H}$ and
(d) $\dim \ker(Az)=n$ for $z$ in $\Omega$.
In the paper, we give a similarity classification of strongly
irreducible CowenDouglas operators by using the $K_0$group of
the commutant algebra as an invariant.
Categories:47A15, 47C15, 13E05, 13F05 
45. CJM 2004 (vol 56 pp. 277)
Spectral Properties of the Commutator of Bergman's Projection and the Operator of Multiplication by an Analytic Function 
Spectral Properties of the Commutator of Bergman's Projection and the Operator of Multiplication by an Analytic Function It is shown that the singular values of the operator $aPPa$, where $P$ is
Bergman's projection over a bounded domain $\Omega$ and $a$ is a function
analytic on $\bar{\Omega}$, detect the length of the boundary of $a(\Omega)$.
Also we point out the relation of that operator and the spectral asymptotics
of a Hankel operator with an antianalytic symbol.
Category:47B10 
46. CJM 2004 (vol 56 pp. 134)
Linear Operators on Matrix Algebras that Preserve the Numerical Range, Numerical Radius or the States 
Linear Operators on Matrix Algebras that Preserve the Numerical Range, Numerical Radius or the States Every norm $\nu$ on $\mathbf{C}^n$ induces two norm numerical
ranges on the algebra $M_n$ of all $n\times n$ complex matrices,
the spatial numerical range
$$
W(A)= \{x^*Ay : x, y \in \mathbf{C}^n,\nu^D(x) = \nu(y) = x^*y = 1\},
$$
where $\nu^D$ is the norm dual to $\nu$, and the algebra numerical range
$$
V(A) = \{ f(A) : f \in \mathcal{S} \},
$$
where $\mathcal{S}$ is the set of states on the normed algebra
$M_n$ under the operator norm induced by $\nu$. For a symmetric
norm $\nu$, we identify all linear maps on $M_n$ that preserve
either one of the two norm numerical ranges or the set of states or
vector states. We also identify the numerical radius isometries,
{\it i.e.}, linear maps that preserve the (one) numerical radius
induced by either numerical range. In particular, it is shown that
if $\nu$ is not the $\ell_1$, $\ell_2$, or $\ell_\infty$ norms,
then the linear maps that preserve either numerical range or either
set of states are ``inner'', {\it i.e.}, of the form $A\mapsto
Q^*AQ$, where $Q$ is a product of a diagonal unitary matrix and a
permutation matrix and the numerical radius isometries are
unimodular scalar multiples of such inner maps. For the $\ell_1$
and the $\ell_\infty$ norms, the results are quite different.
Keywords:Numerical range, numerical radius, state, isometry Categories:15A60, 15A04, 47A12, 47A30 
47. CJM 2003 (vol 55 pp. 1231)
Admissible Majorants for Model Subspaces of $H^2$, Part I: Slow Winding of the Generating Inner Function 
Admissible Majorants for Model Subspaces of $H^2$, Part I: Slow Winding of the Generating Inner Function A model subspace $K_\Theta$ of the Hardy space $H^2 = H^2
(\mathbb{C}_+)$ for the upper half plane $\mathbb{C}_+$ is
$H^2(\mathbb{C}_+) \ominus \Theta H^2(\mathbb{C}_+)$ where $\Theta$
is an inner function in $\mathbb{C}_+$. A function $\omega \colon
\mathbb{R}\mapsto[0,\infty)$ is called {\it an admissible
majorant\/} for $K_\Theta$ if there exists an $f \in K_\Theta$, $f
\not\equiv 0$, $f(x)\leq \omega(x)$ almost everywhere on
$\mathbb{R}$. For some (mainly meromorphic) $\Theta$'s some parts
of $\Adm\Theta$ (the set of all admissible majorants for
$K_\Theta$) are explicitly described. These descriptions depend on
the rate of growth of $\arg \Theta$ along $\mathbb{R}$. This paper
is about slowly growing arguments (slower than $x$). Our results
exhibit the dependence of $\Adm B$ on the geometry of the zeros of
the Blaschke product $B$. A complete description of $\Adm B$ is
obtained for $B$'s with purely imaginary (``vertical'') zeros. We
show that in this case a unique minimal admissible majorant exists.
Keywords:Hardy space, inner function, shift operator, model, subspace, Hilbert transform, admissible majorant Categories:30D55, 47A15 
48. CJM 2003 (vol 55 pp. 1264)
Admissible Majorants for Model Subspaces of $H^2$, Part II: Fast Winding of the Generating Inner Function 
Admissible Majorants for Model Subspaces of $H^2$, Part II: Fast Winding of the Generating Inner Function This paper is a continuation of \cite{HM02I}. We consider the model
subspaces $K_\Theta=H^2\ominus\Theta H^2$ of the Hardy space $H^2$
generated by an inner function $\Theta$ in the upper half plane. Our
main object is the class of admissible majorants for $K_\Theta$,
denoted by $\Adm \Theta$ and consisting of all functions $\omega$
defined on $\mathbb{R}$ such that there exists an $f \ne 0$, $f \in
K_\Theta$ satisfying $f(x)\leq\omega(x)$ almost everywhere on
$\mathbb{R}$. Firstly, using some simple Hilbert transform techniques,
we obtain a general multiplier theorem applicable to any $K_\Theta$
generated by a meromorphic inner function. In contrast with
\cite{HM02I}, we consider the generating functions $\Theta$ such that
the unit vector $\Theta(x)$ winds up fast as $x$ grows from $\infty$
to $\infty$. In particular, we consider $\Theta=B$ where $B$ is a
Blaschke product with ``horizontal'' zeros, {\it i.e.}, almost
uniformly distributed in a strip parallel to and separated from $\mathbb{R}$.
It is shown, among other things, that for any such $B$, any even
$\omega$ decreasing on $(0,\infty)$ with a finite logarithmic integral
is in $\Adm B$ (unlike the ``vertical'' case treated in \cite{HM02I}),
thus generalizing (with a new proof) a classical result related to
$\Adm\exp(i\sigma z)$, $\sigma>0$. Some oscillating $\omega$'s in
$\Adm B$ are also described. Our theme is related to the
BeurlingMalliavin multiplier theorem devoted to $\Adm\exp(i\sigma z)$,
$\sigma>0$, and to de~Branges' space $\mathcal{H}(E)$.
Keywords:Hardy space, inner function, shift operator, model, subspace, Hilbert transform, admissible majorant Categories:30D55, 47A15 
49. CJM 2003 (vol 55 pp. 449)
Graph Subspaces and the Spectral Shift Function We obtain a new representation for the solution to the operator
Sylvester equation in the form of a Stieltjes operator integral.
We also formulate new sufficient conditions for the strong
solvability of the operator Riccati equation that ensures the
existence of reducing graph subspaces for block operator matrices.
Next, we extend the concept of the LifshitsKrein spectral shift
function associated with a pair of selfadjoint operators to the
case of pairs of admissible operators that are similar to
selfadjoint operators. Based on this new concept we express the
spectral shift function arising in a perturbation problem for block
operator matrices in terms of the angular operators associated with
the corresponding perturbed and unperturbed eigenspaces.
Categories:47B44, 47A10, 47A20, 47A40 
50. CJM 2003 (vol 55 pp. 379)
Generalized Factorization in Hardy Spaces and the Commutant of Toeplitz Operators Every classical inner function $\varphi$ in the unit disk gives rise to
a certain factorization of functions in Hardy spaces. This factorization,
which we call the generalized Riesz factorization, coincides with the
classical Riesz factorization when $\varphi(z)=z$. In this paper we prove
several results about the generalized Riesz factorization, and we apply
this factorization theory to obtain a new description of the commutant
of analytic Toeplitz operators with inner symbols on a Hardy space. We
also discuss several related issues in the context of the Bergman space.
Categories:47B35, 30D55, 47A15 