1. CJM Online first
 Graczyk, Piotr; Kemp, Todd; Loeb, JeanJacques

Strong Logarithmic Sobolev Inequalities for LogSubharmonic Functions
We prove an intrinsic equivalence between strong
hypercontractivity and a strong logarithmic Sobolev
inequality for the cone of logarithmically subharmonic
(LSH) functions. We introduce a new large class of measures,
Euclidean regular and exponential type, in addition to all compactlysupported
measures, for which this equivalence holds. We prove a Sobolev
density theorem through LSH functions and use it to prove
the equivalence of strong
hypercontractivity and the strong logarithmic Sobolev
inequality for such logsubharmonic
functions.
Keywords:logarithmic Sobolev inequalities Category:47D06 

2. CJM 2014 (vol 66 pp. 1110)
 Li, Dong; Xu, Guixiang; Zhang, Xiaoyi

On the Dispersive Estimate for the Dirichlet SchrÃ¶dinger Propagator and Applications to Energy Critical NLS
We consider the obstacle problem for the SchrÃ¶dinger evolution
in the exterior of the unit ball with Dirichlet boundary condition. Under
the radial symmetry we compute explicitly the fundamental solution
for the linear Dirichlet SchrÃ¶dinger
propagator $e^{it\Delta_D}$
and give a robust algorithm to prove sharp $L^1 \rightarrow
L^{\infty}$ dispersive estimates. We showcase the analysis in
dimensions $n=5,7$. As an application, we obtain global
wellposedness and scattering for defocusing energycritical NLS on
$\Omega=\mathbb{R}^n\backslash \overline{B(0,1)}$ with Dirichlet boundary
condition and radial data in these dimensions.
Keywords:Dirichlet SchrÃ¶dinger propagator, dispersive estimate, Dirichlet boundary condition, scattering theory, energy critical Categories:35P25, 35Q55, 47J35 

3. CJM 2013 (vol 67 pp. 132)
 Clouâtre, Raphaël

Unitary Equivalence and Similarity to Jordan Models for Weak Contractions of Class $C_0$
We obtain results on the unitary equivalence of weak contractions of
class $C_0$ to their Jordan models under an assumption on their
commutants. In particular, our work addresses the case of arbitrary
finite multiplicity. The main tool is the
theory of boundary representations due to Arveson. We also
generalize and improve previously known results concerning unitary
equivalence and similarity to Jordan models when the minimal function
is a Blaschke product.
Keywords:weak contractions, operators of class $C_0$, Jordan model, unitary equivalence Categories:47A45, 47L55 

4. CJM 2013 (vol 66 pp. 1143)
 Plevnik, Lucijan; Šemrl, Peter

Maps Preserving Complementarity of Closed Subspaces of a Hilbert Space
Let $\mathcal{H}$ and $\mathcal{K}$ be infinitedimensional separable
Hilbert spaces and ${\rm Lat}\,\mathcal{H}$ the lattice of all closed subspaces oh $\mathcal{H}$.
We describe the general form of pairs of bijective maps $\phi , \psi :
{\rm Lat}\,\mathcal{H} \to {\rm Lat}\,\mathcal{K}$ having the property that for every pair
$U,V \in {\rm Lat}\,\mathcal{H}$ we have $\mathcal{H} = U \oplus V \iff \mathcal{K} = \phi (U) \oplus \psi (V)$. Then we reformulate this theorem as a description
of bijective image equality and kernel equality preserving maps acting on bounded linear idempotent operators. Several known
structural results for maps on idempotents are easy consequences.
Keywords:Hilbert space, lattice of closed subspaces, complemented subspaces, adjacent subspaces, idempotents Categories:46B20, 47B49 

5. CJM 2013 (vol 65 pp. 1005)
 Forrest, Brian; Miao, Tianxuan

Uniformly Continuous Functionals and MWeakly Amenable Groups
Let $G$ be a locally compact group. Let $A_{M}(G)$ ($A_{0}(G)$)denote
the closure of $A(G)$, the Fourier algebra of $G$ in the space of
bounded (completely bounded) multipliers of $A(G)$.
We call a locally compact group Mweakly amenable if
$A_M(G)$
has a
bounded approximate identity. We will show that when $G$ is Mweakly
amenable, the algebras $A_{M}(G)$ and $A_{0}(G)$ have
properties that are characteristic of the Fourier algebra of an
amenable group. Along the way we show that the sets of tolopolically
invariant means associated with these algebras have the same
cardinality as those of the Fourier algebra.
Keywords:Fourier algebra, multipliers, weakly amenable, uniformly continuous functionals Categories:43A07, 43A22, 46J10, 47L25 

6. CJM 2013 (vol 66 pp. 387)
 Mashreghi, J.; Shabankhah, M.

Composition of Inner Functions
We study the image of the model subspace $K_\theta$ under the
composition operator $C_\varphi$, where $\varphi$ and $\theta$ are
inner functions, and find the smallest model subspace which contains
the linear manifold $C_\varphi K_\theta$. Then we characterize the
case when $C_\varphi$ maps $K_\theta$ into itself. This case leads to
the study of the inner functions $\varphi$ and $\psi$ such that the
composition $\psi\circ\varphi$ is a divisor of $\psi$ in the family of
inner functions.
Keywords:composition operators, inner functions, Blaschke products, model subspaces Categories:30D55, 30D05, 47B33 

7. CJM 2013 (vol 65 pp. 783)
 Garcés, Jorge J.; Peralta, Antonio M.

Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach
triple systems as a concept which extends the notion of generalised homomorphism between
Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively.
We prove that every generalised triple homomorphism between JB$^*$triples
is automatically continuous. When particularised to C$^*$algebras, we rediscover
one of the main theorems established by B.E. Johnson. We shall also consider generalised
triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$module,
proving that every generalised triple derivation from a JB$^*$triple $E$ into itself or into $E^*$
is automatically continuous.
Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$algebra, JB$^*$triple Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49 

8. CJM 2013 (vol 66 pp. 641)
 Grigor'yan, Alexander; Hu, Jiaxin

Heat Kernels and Green Functions on Metric Measure Spaces
We prove that, in a setting of local Dirichlet forms on metric measure
spaces, a twosided subGaussian estimate of the heat kernel is equivalent
to the conjunction of the volume doubling propety, the elliptic Harnack
inequality and a certain estimate of the capacity between concentric balls.
The main technical tool is the equivalence between the capacity estimate and
the estimate of a mean exit time in a ball, that uses twosided estimates of
a Green function in a ball.
Keywords:Dirichlet form, heat kernel, Green function, capacity Categories:35K08, 28A80, 31B05, 35J08, 46E35, 47D07 

9. CJM 2012 (vol 65 pp. 768)
 Fuller, Adam Hanley

Nonselfadjoint Semicrossed Products by Abelian Semigroups
Let $\mathcal{S}$ be the semigroup $\mathcal{S}=\sum^{\oplus k}_{i=1}\mathcal{S}_i$, where for each $i\in I$,
$\mathcal{S}_i$ is a countable subsemigroup of the additive semigroup $\mathbb{R}_+$ containing $0$. We consider representations
of $\mathcal{S}$ as contractions $\{T_s\}_{s\in\mathcal{S}}$ on a Hilbert space with the Nicacovariance property:
$T_s^*T_t=T_tT_s^*$ whenever $t\wedge s=0$. We show that all such representations have a unique minimal isometric Nicacovariant
dilation.
This result is used to help analyse the nonselfadjoint semicrossed product algebras formed from Nicacovariant representations of the action of $\mathcal{S}$ on an operator algebra $\mathcal{A}$ by completely contractive endomorphisms.
We conclude by calculating the $C^*$envelope of the isometric nonselfadjoint semicrossed product algebra (in the sense
of Kakariadis and Katsoulis).
Keywords:semicrossed product, crossed product, C*envelope, dilations Categories:47L55, 47A20, 47L65 

10. CJM 2011 (vol 64 pp. 1329)
11. CJM 2011 (vol 63 pp. 1161)
 Neuwirth, Stefan; Ricard, Éric

Transfer of Fourier Multipliers into Schur Multipliers and Sumsets in a Discrete Group
We inspect the relationship between relative Fourier
multipliers on noncommutative LebesgueOrlicz spaces of a discrete
group $\varGamma$ and relative ToeplitzSchur multipliers on
SchattenvonNeumannOrlicz classes. Four applications are given:
lacunary sets, unconditional Schauder bases for the subspace of a
Lebesgue space determined by a given spectrum $\varLambda\subseteq\varGamma$, the
norm of the Hilbert transform and the Riesz projection on
SchattenvonNeumann classes with exponent a power of 2, and the norm of
Toeplitz Schur multipliers on SchattenvonNeumann classes with
exponent less than 1.
Keywords:Fourier multiplier, Toeplitz Schur multiplier, lacunary set, unconditional approximation property, Hilbert transform, Riesz projection Categories:47B49, 43A22, 43A46, 46B28 

12. CJM 2011 (vol 64 pp. 183)
 Nowak, Adam; Stempak, Krzysztof

Negative Powers of Laguerre Operators
We study negative powers of Laguerre differential operators in $\mathbb{R}^d$, $d\ge1$.
For these operators we prove twoweight $L^pL^q$ estimates with ranges of $q$ depending
on $p$. The case of the harmonic oscillator (Hermite operator) has recently
been treated by Bongioanni and Torrea by using a straightforward
approach of kernel estimates. Here these results are applied in certain Laguerre settings.
The procedure is fairly direct for Laguerre function expansions of
Hermite type,
due to some monotonicity properties of the kernels involved.
The case of Laguerre function expansions of convolution type is less straightforward.
For halfinteger type indices $\alpha$ we transfer the desired results from the Hermite setting
and then apply an interpolation argument based on a device we call the
convexity principle
to cover the continuous range of $\alpha\in[1/2,\infty)^d$. Finally, we investigate negative powers
of the Dunkl harmonic oscillator in the context of a finite reflection group acting on $\mathbb{R}^d$ and
isomorphic to $\mathbb Z^d_2$. The two weight $L^pL^q$ estimates we obtain in this setting are essentially
consequences of those for Laguerre function expansions of convolution type.
Keywords:potential operator, fractional integral, Riesz potential, negative power, harmonic oscillator, Laguerre operator, Dunkl harmonic oscillator Categories:47G40, 31C15, 26A33 

13. CJM 2011 (vol 63 pp. 1188)
 Śliwa, Wiesław; Ziemkowska, Agnieszka

On Complemented Subspaces of NonArchimedean Power Series Spaces
The nonarchimedean power series spaces, $A_1(a)$ and $A_\infty(b)$, are the
best known and most important examples of nonarchimedean nuclear FrÃ©chet spaces.
We prove that the range of every continuous linear map from $A_p(a)$ to $A_q(b)$
has a Schauder basis if either $p=1$ or $p=\infty$ and the set $M_{b,a}$ of all
bounded limit points of the double sequence
$(b_i/a_j)_{i,j\in\mathbb{N}}$ is bounded. It
follows that every complemented subspace of a power series space $A_p(a)$ has a
Schauder basis if either $p=1$ or $p=\infty$ and the set $M_{a,a}$ is bounded.
Keywords:nonarchimedean KÃ¶the space, range of a continuous linear map, Schauder basis Categories:46S10, 47S10, 46A35 

14. CJM 2011 (vol 63 pp. 862)
15. CJM 2011 (vol 63 pp. 648)
 Ngai, SzeMan

Spectral Asymptotics of Laplacians Associated with Onedimensional Iterated Function Systems with Overlaps
We set up a framework for computing the spectral dimension of a class of onedimensional
selfsimilar measures that are defined by iterated function systems
with overlaps and satisfy a family of secondorder selfsimilar
identities. As applications of our result we obtain the spectral dimension
of important measures such as the infinite Bernoulli convolution
associated with the golden ratio and convolutions of Cantortype measures.
The main novelty of our result is that the iterated function systems
we consider are not postcritically finite and do not satisfy the
wellknown open set condition.
Keywords:spectral dimension, fractal, Laplacian, selfsimilar measure, iterated function system with overlaps, secondorder selfsimilar identities Categories:28A80, , , , 35P20, 35J05, 43A05, 47A75 

16. CJM 2011 (vol 63 pp. 533)
 Espínola, Rafa; FernándezLeón, Aurora

On Best Proximity Points in Metric and Banach Spaces
In this paper we study the existence and uniqueness of
best proximity points of cyclic contractions as well as the convergence
of iterates to such proximity points. We take two different approaches,
each one leading to different results that complete, if not improve,
other similar results in the theory. Results in this paper stand for Banach
spaces, geodesic metric spaces and metric spaces. We also include an appendix
on CAT$(0)$ spaces where we study the particular behavior of these spaces
regarding the problems we are concerned with.
Categories:54H25, 47H09 

17. CJM 2010 (vol 62 pp. 1419)
 Yang, Dachun; Yang, Dongyong

BMOEstimates for Maximal Operators via Approximations of the Identity with NonDoubling Measures
Let $\mu$ be a nonnegative Radon measure
on $\mathbb{R}^d$ that satisfies the growth condition that there exist
constants $C_0>0$ and $n\in(0,d]$ such that for all $x\in\mathbb{R}^d$ and
$r>0$, ${\mu(B(x,\,r))\le C_0r^n}$, where $B(x,r)$ is the open ball
centered at $x$ and having radius $r$. In this paper, the authors prove
that if $f$ belongs to the $\textrm {BMO}$type space $\textrm{RBMO}(\mu)$ of Tolsa, then
the homogeneous maximal function $\dot{\mathcal{M}}_S(f)$ (when $\mathbb{R}^d$ is not an
initial cube) and the inhomogeneous maximal function
$\mathcal{M}_S(f)$ (when $\mathbb{R}^d$ is an initial cube)
associated with a given approximation of the identity $S$ of Tolsa are
either infinite everywhere or finite almost everywhere,
and in the latter case, $\dot{\mathcal{M}}_S$ and $\mathcal{M}_S$ are bounded from
$\textrm{RBMO}(\mu)$ to the $\textrm {BLO}$type
space $\textrm{RBLO}(\mu)$. The authors also prove that the inhomogeneous
maximal operator $\mathcal{M}_S$ is bounded from the local
$\textrm {BMO}$type space $\textrm{rbmo}(\mu)$
to the local $\textrm {BLO}$type space $\textrm{rblo}(\mu)$.
Keywords:Nondoubling measure, maximal operator, approximation of the identity, RBMO(mu), RBLO(mu), rbmo(mu), rblo(mu) Categories:42B25, 42B30, 47A30, 43A99 

18. CJM 2010 (vol 62 pp. 889)
 Xia, Jingbo

Singular Integral Operators and Essential Commutativity on the Sphere
Let ${\mathcal T}$ be the $C^\ast $algebra generated by the Toeplitz operators $\{T_\varphi : \varphi \in L^\infty (S,d\sigma )\}$ on the Hardy space $H^2(S)$ of the unit sphere in $\mathbf{C}^n$. It is well known that ${\mathcal T}$ is contained in the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$. We show that the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$ is strictly larger than ${\mathcal T}$.
Categories:32A55, 46L05, 47L80 

19. CJM 2009 (vol 62 pp. 74)
 Ducrot, Arnaud; Liu, Zhihua; Magal, Pierre

Projectors on the Generalized Eigenspaces for Neutral Functional Differential Equations in $L^{p}$ Spaces
We present the explicit formulas for the projectors on the generalized
eigenspaces associated with some eigenvalues for linear neutral functional
differential equations (NFDE) in $L^{p}$ spaces by using integrated
semigroup theory. The analysis is based on the main result
established elsewhere by the authors and results by Magal and Ruan
on nondensely defined Cauchy problem.
We formulate the NFDE as a nondensely defined Cauchy problem and obtain
some spectral properties from which we then derive explicit formulas for
the projectors on the generalized eigenspaces associated with some
eigenvalues. Such explicit formulas are important in studying bifurcations
in some semilinear problems.
Keywords:neutral functional differential equations, semilinear problem, integrated semigroup, spectrum, projectors Categories:34K05, 35K57, 47A56, 47H20 

20. CJM 2009 (vol 62 pp. 415)
21. CJM 2009 (vol 62 pp. 439)
 Sundhäll, Marcus; Tchoundja, Edgar

On Hankel Forms of Higher Weights: The Case of Hardy Spaces
In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by SundhÃ¤ll for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.
Keywords:Hankel forms, Schattenâvon Neumann classes, Bergman spaces, Hardy spaces, Besov spaces, transvectant, unitary representations, MÃ¶bius group Categories:32A25, 32A35, 32A37, 47B35 

22. CJM 2009 (vol 62 pp. 305)
 Hua, He; Yunbai, Dong; Xianzhou, Guo

Approximation and Similarity Classification of Stably Finitely Strongly Irreducible Decomposable Operators
Let $\mathcal H$ be a complex separable Hilbert space and ${\mathcal L}({\mathcal H})$ denote the collection of bounded linear operators on ${\mathcal H}$. In this paper, we show that for any operator $A\in{\mathcal L}({\mathcal H})$, there exists a stably finitely (SI) decomposable operator $A_\epsilon$, such that $\AA_{\epsilon}\<\epsilon$ and ${\mathcal{\mathcal A}'(A_{\epsilon})}/\operatorname{rad} {{\mathcal A}'(A_{\epsilon})}$ is commutative, where $\operatorname{rad}{{\mathcal A}'(A_{\epsilon})}$ is the Jacobson radical of ${{\mathcal A}'(A_{\epsilon})}$. Moreover, we give a similarity classification of the stably finitely decomposable operators that generalizes the result on similarity classification of CowenDouglas operators given by C. L. Jiang.
Keywords:$K_{0}$group, strongly irreducible decomposition, CowenâDouglas operators, commutant algebra, similarity classification Categories:47A05, 47A55, 46H20 

23. CJM 2009 (vol 62 pp. 242)
24. CJM 2009 (vol 62 pp. 133)
 Makarov, Konstantin A.; Skripka, Anna

Some Applications of the Perturbation Determinant in Finite von Neumann Algebras
In the finite von Neumann algebra setting, we introduce the concept
of a perturbation determinant associated with a pair of selfadjoint
elements $H_0$ and $H$ in the algebra and relate it to the concept of
the de la HarpeSkandalis homotopy invariant determinant associated
with piecewise $C^1$paths of operators joining $H_0$ and $H$. We
obtain an analog of Krein's formula that relates the perturbation
determinant and the spectral shift function and, based on this
relation, we derive subsequently (i) the BirmanSolomyak formula for
a general nonlinear perturbation, (ii) a universality of a spectral
averaging, and (iii) a generalization of the
DixmierFugledeKadison differentiation formula.
Keywords:perturbation determinant, trace formulae, von Neumann algebras Categories:47A55, 47C15, 47A53 

25. CJM 2009 (vol 61 pp. 1239)
 Davidson, Kenneth R.; Yang, Dilian

Periodicity in Rank 2 Graph Algebras
Kumjian and Pask introduced an aperiodicity condition
for higher rank graphs.
We present a detailed analysis of when this occurs
in certain rank 2 graphs.
When the algebra is aperiodic, we give another proof
of the simplicity of $\mathrm{C}^*(\mathbb{F}^+_{\theta})$.
The periodic $\mathrm{C}^*$algebras are characterized, and it is shown
that $\mathrm{C}^*(\mathbb{F}^+_{\theta}) \simeq
\mathrm{C}(\mathbb{T})\otimes\mathfrak{A}$
where $\mathfrak{A}$ is a simple $\mathrm{C}^*$algebra.
Keywords:higher rank graph, aperiodicity condition, simple $\mathrm{C}^*$algebra, expectation Categories:47L55, 47L30, 47L75, 46L05 
