Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46L ( Selfadjoint operator algebras ($C^$-algebras, von Neumann ($W^*$-) algebras, etc.) [See also 22D25, 47Lxx] *$-algebras, von Neumann ($W^*$-) algebras, etc.) [See also 22D25, 47Lxx] * )

  Expand all        Collapse all Results 51 - 75 of 83

51. CJM 2005 (vol 57 pp. 1056)

Ozawa, Narutaka; Rieffel, Marc A.
Hyperbolic Group $C^*$-Algebras and Free-Product $C^*$-Algebras as Compact Quantum Metric Spaces
Let $\ell$ be a length function on a group $G$, and let $M_{\ell}$ denote the operator of pointwise multiplication by $\ell$ on $\bell^2(G)$. Following Connes, $M_{\ell}$ can be used as a ``Dirac'' operator for $C_r^*(G)$. It defines a Lipschitz seminorm on $C_r^*(G)$, which defines a metric on the state space of $C_r^*(G)$. We show that if $G$ is a hyperbolic group and if $\ell$ is a word-length function on $G$, then the topology from this metric coincides with the weak-$*$ topology (our definition of a ``compact quantum metric space''). We show that a convenient framework is that of filtered $C^*$-algebras which satisfy a suitable ``Haagerup-type'' condition. We also use this framework to prove an analogous fact for certain reduced free products of $C^*$-algebras.

Categories:46L87, 20F67, 46L09

52. CJM 2005 (vol 57 pp. 351)

Lin, Huaxin
Extensions by Simple $C^*$-Algebras: Quasidiagonal Extensions
Let $A$ be an amenable separable $C^*$-algebra and $B$ be a non-unital but $\sigma$-unital simple $C^*$-algebra with continuous scale. We show that two essential extensions $\tau_1$ and $\tau_2$ of $A$ by $B$ are approximately unitarily equivalent if and only if $$ [\tau_1]=[\tau_2] \text{ in } KL(A, M(B)/B). $$ If $A$ is assumed to satisfy the Universal Coefficient Theorem, there is a bijection from approximate unitary equivalence classes of the above mentioned extensions to $KL(A, M(B)/B)$. Using $KL(A, M(B)/B)$, we compute exactly when an essential extension is quasidiagonal. We show that quasidiagonal extensions may not be approximately trivial. We also study the approximately trivial extensions.

Keywords:Extensions, Simple $C^*$-algebras
Categories:46L05, 46L35

53. CJM 2005 (vol 57 pp. 17)

Bédos, Erik; Conti, Roberto; Tuset, Lars
On Amenability and Co-Amenability of Algebraic Quantum Groups and Their Corepresentations
We introduce and study several notions of amenability for unitary corepresentations and $*$-representations of algebraic quantum groups, which may be used to characterize amenability and co-amenability for such quantum groups. As a background for this study, we investigate the associated tensor C$^{*}$-categories.

Keywords:quantum group, amenability
Categories:46L05, 46L65, 22D10, 22D25, 43A07, 43A65, 58B32

54. CJM 2004 (vol 56 pp. 1237)

Kishimoto, Akitaka
Central Sequence Algebras of a Purely Infinite Simple $C^{*}$-algebra
We are concerned with a unital separable nuclear purely infinite simple $C^{*}$-algebra\ $A$ satisfying UCT with a Rohlin flow, as a continuation of~\cite{Kismh}. Our first result (which is independent of the Rohlin flow) is to characterize when two {\em central} projections in $A$ are equivalent by a {\em central} partial isometry. Our second result shows that the K-theory of the central sequence algebra $A'\cap A^\omega$ (for an $\omega\in \beta\N\setminus\N$) and its {\em fixed point} algebra under the flow are the same (incorporating the previous result). We will also complete and supplement the characterization result of the Rohlin property for flows stated in~ \cite{Kismh}.


55. CJM 2004 (vol 56 pp. 926)

Hadfield, Tom
K-Homology of the Rotation Algebras $A_{\theta}$
We study the K-homology of the rotation algebras $A_{\theta}$ using the six-term cyclic sequence for the K-homology of a crossed product by ${\bf Z}$. In the case that $\theta$ is irrational, we use Pimsner and Voiculescu's work on AF-embeddings of the $A_{\theta}$ to search for the missing generator of the even K-homology.

Categories:58B34, 19K33, 46L

56. CJM 2004 (vol 56 pp. 983)

Junge, Marius
Fubini's Theorem for Ultraproducts \\of Noncommutative $L_p$-Spaces
Let $(\M_i)_{i\in I}$, $(\N_j)_{j\in J}$ be families of von Neumann algebras and $\U$, $\U'$ be ultrafilters in $I$, $J$, respectively. Let $1\le p<\infty$ and $\nen$. Let $x_1$,\dots,$x_n$ in $\prod L_p(\M_i)$ and $y_1$,\dots,$y_n$ in $\prod L_p(\N_j)$ be bounded families. We show the following equality $$ \lim_{i,\U} \lim_{j,\U'} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} = \lim_{j,\U'} \lim_{i,\U} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} . $$ For $p=1$ this Fubini type result is related to the local reflexivity of duals of $C^*$-algebras. This fails for $p=\infty$.

Keywords:noncommutative $L_p$-spaces, ultraproducts
Categories:46L52, 46B08, 46L07

57. CJM 2004 (vol 56 pp. 843)

Ruan, Zhong-Jin
Type Decomposition and the Rectangular AFD Property for $W^*$-TRO's
We study the type decomposition and the rectangular AFD property for $W^*$-TRO's. Like von Neumann algebras, every $W^*$-TRO can be uniquely decomposed into the direct sum of $W^*$-TRO's of type $I$, type $II$, and type $III$. We may further consider $W^*$-TRO's of type $I_{m, n}$ with cardinal numbers $m$ and $n$, and consider $W^*$-TRO's of type $II_{\lambda, \mu}$ with $\lambda, \mu = 1$ or $\infty$. It is shown that every separable stable $W^*$-TRO (which includes type $I_{\infty,\infty}$, type $II_{\infty, \infty}$ and type $III$) is TRO-isomorphic to a von Neumann algebra. We also introduce the rectangular version of the approximately finite dimensional property for $W^*$-TRO's. One of our major results is to show that a separable $W^*$-TRO is injective if and only if it is rectangularly approximately finite dimensional. As a consequence of this result, we show that a dual operator space is injective if and only if its operator predual is a rigid rectangular ${\OL}_{1, 1^+}$ space (equivalently, a rectangular

Categories:46L07, 46L08, 46L89

58. CJM 2004 (vol 56 pp. 225)

Blower, Gordon; Ransford, Thomas
Complex Uniform Convexity and Riesz Measure
The norm on a Banach space gives rise to a subharmonic function on the complex plane for which the distributional Laplacian gives a Riesz measure. This measure is calculated explicitly here for Lebesgue $L^p$ spaces and the von~Neumann-Schatten trace ideals. Banach spaces that are $q$-uniformly $\PL$-convex in the sense of Davis, Garling and Tomczak-Jaegermann are characterized in terms of the mass distribution of this measure. This gives a new proof that the trace ideals $c^p$ are $2$-uniformly $\PL$-convex for $1\leq p\leq 2$.

Keywords:subharmonic functions, Banach spaces, Schatten trace ideals
Categories:46B20, 46L52

59. CJM 2004 (vol 56 pp. 3)

Amini, Massoud
Locally Compact Pro-$C^*$-Algebras
Let $X$ be a locally compact non-compact Hausdorff topological space. Consider the algebras $C(X)$, $C_b(X)$, $C_0(X)$, and $C_{00}(X)$ of respectively arbitrary, bounded, vanishing at infinity, and compactly supported continuous functions on $X$. Of these, the second and third are $C^*$-algebras, the fourth is a normed algebra, whereas the first is only a topological algebra (it is indeed a pro-$C^\ast$-algebra). The interesting fact about these algebras is that if one of them is given, the others can be obtained using functional analysis tools. For instance, given the $C^\ast$-algebra $C_0(X)$, one can get the other three algebras by $C_{00}(X)=K\bigl(C_0(X)\bigr)$, $C_b(X)=M\bigl(C_0(X)\bigr)$, $C(X)=\Gamma\bigl( K(C_0(X))\bigr)$, where the right hand sides are the Pedersen ideal, the multiplier algebra, and the unbounded multiplier algebra of the Pedersen ideal of $C_0(X)$, respectively. In this article we consider the possibility of these transitions for general $C^\ast$-algebras. The difficult part is to start with a pro-$C^\ast$-algebra $A$ and to construct a $C^\ast$-algebra $A_0$ such that $A=\Gamma\bigl(K(A_0)\bigr)$. The pro-$C^\ast$-algebras for which this is possible are called {\it locally compact\/} and we have characterized them using a concept similar to that of an approximate identity.

Keywords:pro-$C^\ast$-algebras, projective limit, multipliers of Pedersen's ideal
Categories:46L05, 46M40

60. CJM 2003 (vol 55 pp. 1302)

Katsura, Takeshi
The Ideal Structures of Crossed Products of Cuntz Algebras by Quasi-Free Actions of Abelian Groups
We completely determine the ideal structures of the crossed products of Cuntz algebras by quasi-free actions of abelian groups and give another proof of A.~Kishimoto's result on the simplicity of such crossed products. We also give a necessary and sufficient condition that our algebras become primitive, and compute the Connes spectra and $K$-groups of our algebras.

Categories:46L05, 46L55, 46L45

61. CJM 2002 (vol 54 pp. 1100)

Wood, Peter J.
The Operator Biprojectivity of the Fourier Algebra
In this paper, we investigate projectivity in the category of operator spaces. In particular, we show that the Fourier algebra of a locally compact group $G$ is operator biprojective if and only if $G$ is discrete.

Keywords:locally compact group, Fourier algebra, operator space, projective
Categories:13D03, 18G25, 43A95, 46L07, 22D99

62. CJM 2002 (vol 54 pp. 694)

Gabriel, Michael J.
Cuntz Algebra States Defined by Implementers of Endomorphisms of the $\CAR$ Algebra
We investigate representations of the Cuntz algebra $\mathcal{O}_2$ on antisymmetric Fock space $F_a (\mathcal{K}_1)$ defined by isometric implementers of certain quasi-free endomorphisms of the CAR algebra in pure quasi-free states $\varphi_{P_1}$. We pay corresponding to these representations and the Fock special attention to the vector states on $\mathcal{O}_2$ vacuum, for which we obtain explicit formulae. Restricting these states to the gauge-invariant subalgebra $\mathcal{F}_2$, we find that for natural choices of implementers, they are again pure quasi-free and are, in fact, essentially the states $\varphi_{P_1}$. We proceed to consider the case for an arbitrary pair of implementers, and deduce that these Cuntz algebra representations are irreducible, as are their restrictions to $\mathcal{F}_2$. The endomorphisms of $B \bigl( F_a (\mathcal{K}_1) \bigr)$ associated with these representations of $\mathcal{O}_2$ are also considered.

Categories:46L05, 46L30

63. CJM 2002 (vol 54 pp. 138)

Razak, Shaloub
On the Classification of Simple Stably Projectionless $\C^*$-Algebras
It is shown that simple stably projectionless $\C^S*$-algebras which are inductive limits of certain specified building blocks with trivial $\K$-theory are classified by their cone of positive traces with distinguished subset. This is the first example of an isomorphism theorem verifying the conjecture of Elliott for a subclass of the stably projectionless algebras.

Categories:46L35, 46L05

64. CJM 2001 (vol 53 pp. 1223)

Mygind, Jesper
Classification of Certain Simple $C^*$-Algebras with Torsion in $K_1$
We show that the Elliott invariant is a classifying invariant for the class of $C^*$-algebras that are simple unital infinite dimensional inductive limits of finite direct sums of building blocks of the form $$ \{f \in C(\T) \otimes M_n : f(x_i) \in M_{d_i}, i = 1,2,\dots,N\}, $$ where $x_1,x_2,\dots,x_N \in \T$, $d_1,d_2,\dots,d_N$ are integers dividing $n$, and $M_{d_i}$ is embedded unitally into $M_n$. Furthermore we prove existence and uniqueness theorems for $*$-homomorphisms between such algebras and we identify the range of the invariant.

Categories:46L80, 19K14, 46L05

65. CJM 2001 (vol 53 pp. 979)

Nagisa, Masaru; Osaka, Hiroyuki; Phillips, N. Christopher
Ranks of Algebras of Continuous $C^*$-Algebra Valued Functions
We prove a number of results about the stable and particularly the real ranks of tensor products of \ca s under the assumption that one of the factors is commutative. In particular, we prove the following: {\raggedright \begin{enumerate}[(5)] \item[(1)] If $X$ is any locally compact $\sm$-compact Hausdorff space and $A$ is any \ca, then\break $\RR \bigl( C_0 (X) \otimes A \bigr) \leq \dim (X) + \RR(A)$. \item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$. \item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$ for any unital \ca\ $A$. \item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) = 1$, and $K_1 (A) = 0$, then\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \item[(5)] There is a simple separable unital nuclear \ca\ $A$ such that $\RR(A) = 1$ and\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \end{enumerate}}

Categories:46L05, 46L52, 46L80, 19A13, 19B10

66. CJM 2001 (vol 53 pp. 809)

Robertson, Guyan; Steger, Tim
Asymptotic $K$-Theory for Groups Acting on $\tA_2$ Buildings
Let $\Gamma$ be a torsion free lattice in $G=\PGL(3, \mathbb{F})$ where $\mathbb{F}$ is a nonarchimedean local field. Then $\Gamma$ acts freely on the affine Bruhat-Tits building $\mathcal{B}$ of $G$ and there is an induced action on the boundary $\Omega$ of $\mathcal{B}$. The crossed product $C^*$-algebra $\mathcal{A}(\Gamma)=C(\Omega) \rtimes \Gamma$ depends only on $\Gamma$ and is classified by its $K$-theory. This article shows how to compute the $K$-theory of $\mathcal{A}(\Gamma)$ and of the larger class of rank two Cuntz-Krieger algebras.

Keywords:$K$-theory, $C^*$-algebra, affine building
Categories:46L80, 51E24

67. CJM 2001 (vol 53 pp. 546)

Erlijman, Juliana
Multi-Sided Braid Type Subfactors
We generalise the two-sided construction of examples of pairs of subfactors of the hyperfinite II$_1$ factor $R$ in [E1]---which arise by considering unitary braid representations with certain properties---to multi-sided pairs. We show that the index for the multi-sided pair can be expressed as a power of that for the two-sided pair. This construction can be applied to the natural examples---where the braid representations are obtained in connection with the representation theory of Lie algebras of types $A$, $B$, $C$, $D$. We also compute the (first) relative commutants.


68. CJM 2001 (vol 53 pp. 631)

Walters, Samuel G.
K-Theory of Non-Commutative Spheres Arising from the Fourier Automorphism
For a dense $G_\delta$ set of real parameters $\theta$ in $[0,1]$ (containing the rationals) it is shown that the group $K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4)$ is isomorphic to $\mathbb{Z}^9$, where $A_\theta$ is the rotation C*-algebra generated by unitaries $U$, $V$ satisfying $VU = e^{2\pi i\theta} UV$ and $\sigma$ is the Fourier automorphism of $A_\theta$ defined by $\sigma(U) = V$, $\sigma(V) = U^{-1}$. More precisely, an explicit basis for $K_0$ consisting of nine canonical modules is given. (A slight generalization of this result is also obtained for certain separable continuous fields of unital C*-algebras over $[0,1]$.) The Connes Chern character $\ch \colon K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4) \to H^{\ev} (A_\theta \rtimes_\sigma \mathbb{Z}_4)^*$ is shown to be injective for a dense $G_\delta$ set of parameters $\theta$. The main computational tool in this paper is a group homomorphism $\vtr \colon K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4) \to \mathbb{R}^8 \times \mathbb{Z}$ obtained from the Connes Chern character by restricting the functionals in its codomain to a certain nine-dimensional subspace of $H^{\ev} (A_\theta \rtimes_\sigma \mathbb{Z}_4)$. The range of $\vtr$ is fully determined for each $\theta$. (We conjecture that this subspace is all of $H^{\ev}$.)

Keywords:C*-algebras, K-theory, automorphisms, rotation algebras, unbounded traces, Chern characters
Categories:46L80, 46L40, 19K14

69. CJM 2001 (vol 53 pp. 592)

Perera, Francesc
Ideal Structure of Multiplier Algebras of Simple $C^*$-algebras With Real Rank Zero
We give a description of the monoid of Murray-von Neumann equivalence classes of projections for multiplier algebras of a wide class of $\sigma$-unital simple $C^\ast$-algebras $A$ with real rank zero and stable rank one. The lattice of ideals of this monoid, which is known to be crucial for understanding the ideal structure of the multiplier algebra $\mul$, is therefore analyzed. In important cases it is shown that, if $A$ has finite scale then the quotient of $\mul$ modulo any closed ideal $I$ that properly contains $A$ has stable rank one. The intricacy of the ideal structure of $\mul$ is reflected in the fact that $\mul$ can have uncountably many different quotients, each one having uncountably many closed ideals forming a chain with respect to inclusion.

Keywords:$C^\ast$-algebra, multiplier algebra, real rank zero, stable rank, refinement monoid
Categories:46L05, 46L80, 06F05

70. CJM 2001 (vol 53 pp. 355)

Nica, Alexandru; Shlyakhtenko, Dimitri; Speicher, Roland
$R$-Diagonal Elements and Freeness With Amalgamation
The concept of $R$-diagonal element was introduced in \cite{NS2}, and was subsequently found to have applications to several problems in free probability. In this paper we describe a new approach to $R$-diagonality, which relies on freeness with amalgamation. The class of $R$-diagonal elements is enlarged to contain examples living in non-tracial $*$-probability spaces, such as the generalized circular elements of \cite{Sh1}.


71. CJM 2001 (vol 53 pp. 325)

Matui, Hiroki
Ext and OrderExt Classes of Certain Automorphisms of $C^*$-Algebras Arising from Cantor Minimal Systems
Giordano, Putnam and Skau showed that the transformation group $C^*$-algebra arising from a Cantor minimal system is an $AT$-algebra, and classified it by its $K$-theory. For approximately inner automorphisms that preserve $C(X)$, we will determine their classes in the Ext and OrderExt groups, and introduce a new invariant for the closure of the topological full group. We will also prove that every automorphism in the kernel of the homomorphism into the Ext group is homotopic to an inner automorphism, which extends Kishimoto's result.

Categories:46L40, 46L80, 54H20

72. CJM 2001 (vol 53 pp. 51)

Dean, Andrew
A Continuous Field of Projectionless $C^*$-Algebras
We use some results about stable relations to show that some of the simple, stable, projectionless crossed products of $O_2$ by $\bR$ considered by Kishimoto and Kumjian are inductive limits of type I $C^*$-algebras. The type I $C^*$-algebras that arise are pullbacks of finite direct sums of matrix algebras over the continuous functions on the unit interval by finite dimensional $C^*$-algebras.

Categories:46L35, 46L57

73. CJM 2001 (vol 53 pp. 161)

Lin, Huaxin
Classification of Simple Tracially AF $C^*$-Algebras
We prove that pre-classifiable (see 3.1) simple nuclear tracially AF \CA s (TAF) are classified by their $K$-theory. As a consequence all simple, locally AH and TAF \CA s are in fact AH algebras (it is known that there are locally AH algebras that are not AH). We also prove the following Rationalization Theorem. Let $A$ and $B$ be two unital separable nuclear simple TAF \CA s with unique normalized traces satisfying the Universal Coefficient Theorem. If $A$ and $B$ have the same (ordered and scaled) $K$-theory and $K_0 (A)_+$ is locally finitely generated, then $A \otimes Q \cong B \otimes Q$, where $Q$ is the UHF-algebra with the rational $K_0$. Classification results (with restriction on $K_0$-theory) for the above \CA s are also obtained. For example, we show that, if $A$ and $B$ are unital nuclear separable simple TAF \CA s with the unique normalized trace satisfying the UCT and with $K_1(A) = K_1(B)$, and $A$ and $B$ have the same rational (scaled ordered) $K_0$, then $A \cong B$. Similar results are also obtained for some cases in which $K_0$ is non-divisible such as $K_0(A) = \mathbf{Z} [1/2]$.

Categories:46L05, 46L35

74. CJM 2000 (vol 52 pp. 1164)

Elliott, George A.; Villadsen, Jesper
Perforated Ordered $\K_0$-Groups
A simple $\C^*$-algebra is constructed for which the Murray-von Neumann equivalence classes of projections, with the usual addition---induced by addition of orthogonal projections---form the additive semi-group $$ \{0,2,3,\dots\}. $$ (This is a particularly simple instance of the phenomenon of perforation of the ordered $\K_0$-group, which has long been known in the commutative case---for instance, in the case of the four-sphere---and was recently observed by the second author in the case of a simple $\C^*$-algebra.)

Categories:46L35, 46L80

75. CJM 2000 (vol 52 pp. 849)

Sukochev, F. A.
Operator Estimates for Fredholm Modules
We study estimates of the type $$ \Vert \phi(D) - \phi(D_0) \Vert_{\emt} \leq C \cdot \Vert D - D_0 \Vert^{\alpha}, \quad \alpha = \frac12, 1 $$ where $\phi(t) = t(1 + t^2)^{-1/2}$, $D_0 = D_0^*$ is an unbounded linear operator affiliated with a semifinite von Neumann algebra $\calM$, $D - D_0$ is a bounded self-adjoint linear operator from $\calM$ and $(1 + D_0^2)^{-1/2} \in \emt$, where $\emt$ is a symmetric operator space associated with $\calM$. In particular, we prove that $\phi(D) - \phi(D_0)$ belongs to the non-commutative $L_p$-space for some $p \in (1,\infty)$, provided $(1 + D_0^2)^{-1/2}$ belongs to the non-commutative weak $L_r$-space for some $r \in [1,p)$. In the case $\calM = \calB (\calH)$ and $1 \leq p \leq 2$, we show that this result continues to hold under the weaker assumption $(1 + D_0^2)^{-1/2} \in \calC_p$. This may be regarded as an odd counterpart of A.~Connes' result for the case of even Fredholm modules.

Categories:46L50, 46E30, 46L87, 47A55, 58B15
   1 2 3 4    

© Canadian Mathematical Society, 2017 :