51. CJM 2004 (vol 56 pp. 983)
 Junge, Marius

Fubini's Theorem for Ultraproducts \\of Noncommutative $L_p$Spaces
Let $(\M_i)_{i\in I}$, $(\N_j)_{j\in J}$ be families of von
Neumann algebras and $\U$, $\U'$ be ultrafilters in $I$, $J$,
respectively. Let $1\le p<\infty$ and $\nen$. Let $x_1$,\dots,$x_n$ in
$\prod L_p(\M_i)$ and $y_1$,\dots,$y_n$ in $\prod L_p(\N_j)$ be
bounded families. We show the following equality
$$
\lim_{i,\U} \lim_{j,\U'} \Big\ \summ_{k=1}^n x_k(i)\otimes
y_k(j)\Big\_{L_p(\M_i\otimes \N_j)} = \lim_{j,\U'} \lim_{i,\U}
\Big\ \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\_{L_p(\M_i\otimes \N_j)} .
$$
For $p=1$ this Fubini type result is related to the local
reflexivity of duals of $C^*$algebras. This fails for $p=\infty$.
Keywords:noncommutative $L_p$spaces, ultraproducts Categories:46L52, 46B08, 46L07 

52. CJM 2004 (vol 56 pp. 926)
 Hadfield, Tom

KHomology of the Rotation Algebras $A_{\theta}$
We study the Khomology of the rotation algebras
$A_{\theta}$ using the sixterm cyclic sequence
for the Khomology of a crossed product by
${\bf Z}$. In the case that $\theta$ is irrational,
we use Pimsner and Voiculescu's work on AFembeddings
of the $A_{\theta}$ to search for the missing
generator of the even Khomology.
Categories:58B34, 19K33, 46L 

53. CJM 2004 (vol 56 pp. 843)
 Ruan, ZhongJin

Type Decomposition and the Rectangular AFD Property for $W^*$TRO's
We study the type decomposition and the rectangular AFD property for
$W^*$TRO's. Like von Neumann algebras, every $W^*$TRO can be
uniquely decomposed into the direct sum of $W^*$TRO's of
type $I$, type $II$, and type $III$.
We may further consider $W^*$TRO's of type $I_{m, n}$
with cardinal numbers $m$ and $n$, and consider $W^*$TRO's of
type $II_{\lambda, \mu}$ with $\lambda, \mu = 1$ or $\infty$.
It is shown that every separable stable $W^*$TRO
(which includes type $I_{\infty,\infty}$, type $II_{\infty,
\infty}$ and type $III$) is TROisomorphic to a von Neumann algebra.
We also introduce the rectangular version of the approximately finite
dimensional property for $W^*$TRO's.
One of our major results is to show that a separable $W^*$TRO
is injective if and only
if it is rectangularly approximately finite dimensional.
As a consequence of this result, we show that a dual operator space
is injective if and only if its operator predual is a rigid
rectangular ${\OL}_{1, 1^+}$ space (equivalently, a rectangular
Categories:46L07, 46L08, 46L89 

54. CJM 2004 (vol 56 pp. 225)
 Blower, Gordon; Ransford, Thomas

Complex Uniform Convexity and Riesz Measure
The norm on a Banach space gives rise to a subharmonic function on the
complex plane for which the distributional Laplacian gives a Riesz measure.
This measure is calculated explicitly here for Lebesgue $L^p$ spaces and the
von~NeumannSchatten trace ideals. Banach spaces that are $q$uniformly
$\PL$convex in the sense of Davis, Garling and TomczakJaegermann are
characterized in terms of the mass distribution of this measure. This gives
a new proof that the trace ideals $c^p$ are $2$uniformly $\PL$convex for
$1\leq p\leq 2$.
Keywords:subharmonic functions, Banach spaces, Schatten trace ideals Categories:46B20, 46L52 

55. CJM 2004 (vol 56 pp. 3)
 Amini, Massoud

Locally Compact Pro$C^*$Algebras
Let $X$ be a locally compact noncompact Hausdorff topological space. Consider
the algebras $C(X)$, $C_b(X)$, $C_0(X)$, and $C_{00}(X)$ of respectively arbitrary,
bounded, vanishing at infinity, and compactly supported continuous functions on $X$.
Of these, the second and third are $C^*$algebras, the fourth is a normed algebra,
whereas the first is only a topological algebra (it is indeed a pro$C^\ast$algebra).
The interesting fact about these algebras is that if one of them is given, the
others can be obtained using functional analysis tools. For instance, given the
$C^\ast$algebra $C_0(X)$, one can get the other three algebras by
$C_{00}(X)=K\bigl(C_0(X)\bigr)$, $C_b(X)=M\bigl(C_0(X)\bigr)$, $C(X)=\Gamma\bigl(
K(C_0(X))\bigr)$, where the right hand sides are the Pedersen ideal, the
multiplier algebra, and the unbounded multiplier algebra of the Pedersen ideal of
$C_0(X)$, respectively. In this article we consider the possibility of these
transitions for general $C^\ast$algebras. The difficult part is to start with a
pro$C^\ast$algebra $A$ and to construct a $C^\ast$algebra $A_0$ such that
$A=\Gamma\bigl(K(A_0)\bigr)$. The pro$C^\ast$algebras for which this is
possible are called {\it locally compact\/} and we have characterized them using
a concept similar to that of an approximate identity.
Keywords:pro$C^\ast$algebras, projective limit, multipliers of Pedersen's ideal Categories:46L05, 46M40 

56. CJM 2003 (vol 55 pp. 1302)
57. CJM 2002 (vol 54 pp. 1100)
 Wood, Peter J.

The Operator Biprojectivity of the Fourier Algebra
In this paper, we investigate projectivity in the category of operator
spaces. In particular, we show that the Fourier algebra of a locally
compact group $G$ is operator biprojective if and only if $G$ is
discrete.
Keywords:locally compact group, Fourier algebra, operator space, projective Categories:13D03, 18G25, 43A95, 46L07, 22D99 

58. CJM 2002 (vol 54 pp. 694)
 Gabriel, Michael J.

Cuntz Algebra States Defined by Implementers of Endomorphisms of the $\CAR$ Algebra
We investigate representations of the Cuntz algebra $\mathcal{O}_2$
on antisymmetric Fock space $F_a (\mathcal{K}_1)$ defined by
isometric implementers of certain quasifree endomorphisms of the
CAR algebra in pure quasifree states $\varphi_{P_1}$. We pay
corresponding to these representations and the Fock special
attention to the vector states on $\mathcal{O}_2$ vacuum, for which
we obtain explicit formulae. Restricting these states to the
gaugeinvariant subalgebra $\mathcal{F}_2$, we find that for
natural choices of implementers, they are again pure quasifree and
are, in fact, essentially the states $\varphi_{P_1}$. We proceed to
consider the case for an arbitrary pair of implementers, and deduce
that these Cuntz algebra representations are irreducible, as are their
restrictions to $\mathcal{F}_2$.
The endomorphisms of $B \bigl( F_a (\mathcal{K}_1) \bigr)$ associated
with these representations of $\mathcal{O}_2$ are also considered.
Categories:46L05, 46L30 

59. CJM 2002 (vol 54 pp. 138)
 Razak, Shaloub

On the Classification of Simple Stably Projectionless $\C^*$Algebras
It is shown that simple stably projectionless $\C^S*$algebras which
are inductive limits of certain specified building blocks with trivial
$\K$theory are classified by their cone of positive traces with
distinguished subset. This is the first example of an isomorphism
theorem verifying the conjecture of Elliott for a subclass of the
stably projectionless algebras.
Categories:46L35, 46L05 

60. CJM 2001 (vol 53 pp. 1223)
 Mygind, Jesper

Classification of Certain Simple $C^*$Algebras with Torsion in $K_1$
We show that the Elliott invariant is a classifying invariant for the
class of $C^*$algebras that are simple unital infinite dimensional
inductive limits of finite direct sums of building blocks of the form
$$
\{f \in C(\T) \otimes M_n : f(x_i) \in M_{d_i}, i = 1,2,\dots,N\},
$$
where $x_1,x_2,\dots,x_N \in \T$, $d_1,d_2,\dots,d_N$ are integers
dividing $n$, and $M_{d_i}$ is embedded unitally into $M_n$.
Furthermore we prove existence and uniqueness theorems for
$*$homomorphisms between such algebras and we identify the range of
the invariant.
Categories:46L80, 19K14, 46L05 

61. CJM 2001 (vol 53 pp. 979)
 Nagisa, Masaru; Osaka, Hiroyuki; Phillips, N. Christopher

Ranks of Algebras of Continuous $C^*$Algebra Valued Functions
We prove a number of results about the stable and particularly the
real ranks of tensor products of \ca s under the assumption that one
of the factors is commutative. In particular, we prove the following:
{\raggedright
\begin{enumerate}[(5)]
\item[(1)] If $X$ is any locally compact $\sm$compact Hausdorff space
and $A$ is any \ca, then\break
$\RR \bigl( C_0 (X) \otimes A \bigr) \leq
\dim (X) + \RR(A)$.
\item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is
any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$.
\item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any
nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$
for any unital \ca\ $A$.
\item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) =
1$, and $K_1 (A) = 0$, then\break
$\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$.
\item[(5)] There is a simple separable unital nuclear \ca\ $A$ such
that $\RR(A) = 1$ and\break
$\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$.
\end{enumerate}}
Categories:46L05, 46L52, 46L80, 19A13, 19B10 

62. CJM 2001 (vol 53 pp. 809)
 Robertson, Guyan; Steger, Tim

Asymptotic $K$Theory for Groups Acting on $\tA_2$ Buildings
Let $\Gamma$ be a torsion free lattice in $G=\PGL(3, \mathbb{F})$ where
$\mathbb{F}$ is a nonarchimedean local field. Then $\Gamma$ acts freely
on the affine BruhatTits building $\mathcal{B}$ of $G$ and there is an
induced action on the boundary $\Omega$ of $\mathcal{B}$. The crossed
product $C^*$algebra $\mathcal{A}(\Gamma)=C(\Omega) \rtimes \Gamma$
depends only on $\Gamma$ and is classified by its $K$theory. This article
shows how to compute the $K$theory of $\mathcal{A}(\Gamma)$ and of the
larger class of rank two CuntzKrieger algebras.
Keywords:$K$theory, $C^*$algebra, affine building Categories:46L80, 51E24 

63. CJM 2001 (vol 53 pp. 592)
 Perera, Francesc

Ideal Structure of Multiplier Algebras of Simple $C^*$algebras With Real Rank Zero
We give a description of the monoid of Murrayvon Neumann equivalence
classes of projections for multiplier algebras of a wide class of
$\sigma$unital simple $C^\ast$algebras $A$ with real rank zero and stable
rank one. The lattice of ideals of this monoid, which is known to be
crucial for understanding the ideal structure of the multiplier
algebra $\mul$, is therefore analyzed. In important cases it is shown
that, if $A$ has finite scale then the quotient of $\mul$ modulo any
closed ideal $I$ that properly contains $A$ has stable rank one. The
intricacy of the ideal structure of $\mul$ is reflected in the fact
that $\mul$ can have uncountably many different quotients, each one
having uncountably many closed ideals forming a chain with respect to
inclusion.
Keywords:$C^\ast$algebra, multiplier algebra, real rank zero, stable rank, refinement monoid Categories:46L05, 46L80, 06F05 

64. CJM 2001 (vol 53 pp. 631)
 Walters, Samuel G.

KTheory of NonCommutative Spheres Arising from the Fourier Automorphism
For a dense $G_\delta$ set of real parameters $\theta$ in $[0,1]$
(containing the rationals) it is shown that the group $K_0 (A_\theta
\rtimes_\sigma \mathbb{Z}_4)$ is isomorphic to $\mathbb{Z}^9$, where
$A_\theta$ is the rotation C*algebra generated by unitaries $U$, $V$
satisfying $VU = e^{2\pi i\theta} UV$ and $\sigma$ is the Fourier
automorphism of $A_\theta$ defined by $\sigma(U) = V$, $\sigma(V) =
U^{1}$. More precisely, an explicit basis for $K_0$ consisting of
nine canonical modules is given. (A slight generalization of this
result is also obtained for certain separable continuous fields of
unital C*algebras over $[0,1]$.) The Connes Chern character $\ch
\colon K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4) \to H^{\ev} (A_\theta
\rtimes_\sigma \mathbb{Z}_4)^*$ is shown to be injective for a dense
$G_\delta$ set of parameters $\theta$. The main computational tool in
this paper is a group homomorphism $\vtr \colon K_0 (A_\theta
\rtimes_\sigma \mathbb{Z}_4) \to \mathbb{R}^8 \times \mathbb{Z}$
obtained from the Connes Chern character by restricting the
functionals in its codomain to a certain ninedimensional subspace of
$H^{\ev} (A_\theta \rtimes_\sigma \mathbb{Z}_4)$. The range of $\vtr$
is fully determined for each $\theta$. (We conjecture that this
subspace is all of $H^{\ev}$.)
Keywords:C*algebras, Ktheory, automorphisms, rotation algebras, unbounded traces, Chern characters Categories:46L80, 46L40, 19K14 

65. CJM 2001 (vol 53 pp. 546)
 Erlijman, Juliana

MultiSided Braid Type Subfactors
We generalise the twosided construction of examples of pairs of
subfactors of the hyperfinite II$_1$ factor $R$ in [E1]which arise
by considering unitary braid representations with certain
propertiesto multisided pairs. We show that the index for the
multisided pair can be expressed as a power of that for the
twosided pair. This construction can be applied to the natural
exampleswhere the braid representations are obtained in connection
with the representation theory of Lie algebras of types $A$, $B$, $C$,
$D$. We also compute the (first) relative commutants.
Category:46L37 

66. CJM 2001 (vol 53 pp. 355)
 Nica, Alexandru; Shlyakhtenko, Dimitri; Speicher, Roland

$R$Diagonal Elements and Freeness With Amalgamation
The concept of $R$diagonal element was introduced in \cite{NS2},
and was subsequently found to have applications to several problems
in free probability. In this paper we describe a new approach to
$R$diagonality, which relies on freeness with amalgamation.
The class of $R$diagonal elements is enlarged to contain examples
living in nontracial $*$probability spaces, such as the
generalized circular elements of \cite{Sh1}.
Category:46L54 

67. CJM 2001 (vol 53 pp. 325)
 Matui, Hiroki

Ext and OrderExt Classes of Certain Automorphisms of $C^*$Algebras Arising from Cantor Minimal Systems
Giordano, Putnam and Skau showed that the transformation group
$C^*$algebra arising from a Cantor minimal system is an $AT$algebra,
and classified it by its $K$theory. For approximately inner
automorphisms that preserve $C(X)$, we will determine their classes in
the Ext and OrderExt groups, and introduce a new invariant for the
closure of the topological full group. We will also prove that every
automorphism in the kernel of the homomorphism into the Ext group is
homotopic to an inner automorphism, which extends Kishimoto's result.
Categories:46L40, 46L80, 54H20 

68. CJM 2001 (vol 53 pp. 51)
 Dean, Andrew

A Continuous Field of Projectionless $C^*$Algebras
We use some results about stable relations to show that some of the
simple, stable, projectionless crossed products of $O_2$ by $\bR$
considered by Kishimoto and Kumjian are inductive limits of type I
$C^*$algebras. The type I $C^*$algebras that arise are pullbacks
of finite direct sums of matrix algebras over the continuous
functions on the unit interval by finite dimensional $C^*$algebras.
Categories:46L35, 46L57 

69. CJM 2001 (vol 53 pp. 161)
 Lin, Huaxin

Classification of Simple Tracially AF $C^*$Algebras
We prove that preclassifiable (see 3.1) simple nuclear tracially AF
\CA s (TAF) are classified by their $K$theory. As a consequence all
simple, locally AH and TAF \CA s are in fact AH algebras (it is known
that there are locally AH algebras that are not AH). We also prove
the following Rationalization Theorem. Let $A$ and $B$ be two unital
separable nuclear simple TAF \CA s with unique normalized traces
satisfying the Universal Coefficient Theorem. If $A$ and $B$ have the
same (ordered and scaled) $K$theory and $K_0 (A)_+$ is locally
finitely generated, then $A \otimes Q \cong B \otimes Q$, where $Q$ is
the UHFalgebra with the rational $K_0$. Classification results (with
restriction on $K_0$theory) for the above \CA s are also obtained.
For example, we show that, if $A$ and $B$ are unital nuclear separable
simple TAF \CA s with the unique normalized trace satisfying the UCT
and with $K_1(A) = K_1(B)$, and $A$ and $B$ have the same rational
(scaled ordered) $K_0$, then $A \cong B$. Similar results are also
obtained for some cases in which $K_0$ is nondivisible such as
$K_0(A) = \mathbf{Z} [1/2]$.
Categories:46L05, 46L35 

70. CJM 2000 (vol 52 pp. 1164)
 Elliott, George A.; Villadsen, Jesper

Perforated Ordered $\K_0$Groups
A simple $\C^*$algebra is constructed for which the Murrayvon
Neumann equivalence classes of projections, with the usual
additioninduced by addition of orthogonal projectionsform the
additive semigroup
$$
\{0,2,3,\dots\}.
$$
(This is a particularly simple instance of the phenomenon of
perforation of the ordered $\K_0$group, which has long been known in
the commutative casefor instance, in the case of the
foursphereand was recently observed by the second author in the
case of a simple $\C^*$algebra.)
Categories:46L35, 46L80 

71. CJM 2000 (vol 52 pp. 849)
 Sukochev, F. A.

Operator Estimates for Fredholm Modules
We study estimates of the type
$$
\Vert \phi(D)  \phi(D_0) \Vert_{\emt} \leq C \cdot \Vert D  D_0
\Vert^{\alpha}, \quad \alpha = \frac12, 1
$$
where $\phi(t) = t(1 + t^2)^{1/2}$, $D_0 = D_0^*$ is an unbounded
linear operator affiliated with a semifinite von Neumann algebra
$\calM$, $D  D_0$ is a bounded selfadjoint linear operator from
$\calM$ and $(1 + D_0^2)^{1/2} \in \emt$, where $\emt$ is a symmetric
operator space associated with $\calM$. In particular, we prove that
$\phi(D)  \phi(D_0)$ belongs to the noncommutative $L_p$space for
some $p \in (1,\infty)$, provided $(1 + D_0^2)^{1/2}$ belongs to the
noncommutative weak $L_r$space for some $r \in [1,p)$. In the case
$\calM = \calB (\calH)$ and $1 \leq p \leq 2$, we show that this
result continues to hold under the weaker assumption $(1 +
D_0^2)^{1/2} \in \calC_p$. This may be regarded as an odd
counterpart of A.~Connes' result for the case of even Fredholm
modules.
Categories:46L50, 46E30, 46L87, 47A55, 58B15 

72. CJM 2000 (vol 52 pp. 633)
 Walters, Samuel G.

Chern Characters of Fourier Modules
Let $A_\theta$ denote the rotation algebrathe universal $C^\ast$algebra
generated by unitaries $U,V$ satisfying $VU=e^{2\pi i\theta}UV$, where
$\theta$ is a fixed real number. Let $\sigma$ denote the Fourier
automorphism of $A_\theta$ defined by $U\mapsto V$, $V\mapsto U^{1}$,
and let $B_\theta = A_\theta \rtimes_\sigma \mathbb{Z}/4\mathbb{Z}$ denote
the associated $C^\ast$crossed product. It is shown that there is a
canonical inclusion $\mathbb{Z}^9 \hookrightarrow K_0(B_\theta)$ for each
$\theta$ given by nine canonical modules. The unbounded trace functionals
of $B_\theta$ (yielding the Chern characters here) are calculated to obtain
the cyclic cohomology group of order zero $\HC^0(B_\theta)$ when
$\theta$ is irrational. The Chern characters of the nine modulesand more
importantly, the Fourier moduleare computed and shown to involve techniques
from the theory of Jacobi's theta functions. Also derived are explicit
equations connecting unbounded traces across strong Morita equivalence, which
turn out to be noncommutative extensions of certain theta function equations.
These results provide the basis for showing that for a dense $G_\delta$ set
of values of $\theta$ one has $K_0(B_\theta)\cong\mathbb{Z}^9$ and is
generated by the nine classes constructed here.
Keywords:$C^\ast$algebras, unbounded traces, Chern characters, irrational rotation algebras, $K$groups Categories:46L80, 46L40 

73. CJM 1999 (vol 51 pp. 745)
 Echterhoff, Siegfried; Quigg, John

Induced Coactions of Discrete Groups on $C^*$Algebras
Using the close relationship between coactions of discrete groups and
Fell bundles, we introduce a procedure for inducing a $C^*$coaction
$\delta\colon D\to D\otimes C^*(G/N)$ of a quotient group $G/N$ of a
discrete group $G$ to a $C^*$coaction $\Ind\delta\colon\Ind D\to \Ind
D\otimes C^*(G)$ of $G$. We show that induced coactions behave in many
respects similarly to induced actions. In particular, as an analogue of
the well known imprimitivity theorem for induced actions we prove that
the crossed products $\Ind D\times_{\Ind\delta}G$ and $D\times_{\delta}G/N$
are always Morita equivalent. We also obtain nonabelian analogues of a
theorem of Olesen and Pedersen which show that there is a duality between
induced coactions and twisted actions in the sense of Green. We further
investigate amenability of Fell bundles corresponding to induced coactions.
Category:46L55 

74. CJM 1999 (vol 51 pp. 850)
 Muhly, Paul S.; Solel, Baruch

Tensor Algebras, Induced Representations, and the Wold Decomposition
Our objective in this sequel to \cite{MSp96a} is to develop extensions,
to representations of tensor algebras over $C^{*}$correspondences, of
two fundamental facts about isometries on Hilbert space: The Wold
decomposition theorem and Beurling's theorem, and to apply these to
the analysis of the invariant subspace structure of certain subalgebras
of CuntzKrieger algebras.
Keywords:tensor algebras, correspondence, induced representation, Wold decomposition, Beurling's theorem Categories:46L05, 46L40, 46L89, 47D15, 47D25, 46M10, 46M99, 47A20, 47A45, 47B35 

75. CJM 1998 (vol 50 pp. 673)
 Carey, Alan; Phillips, John

Fredholm modules and spectral flow
An {\it odd unbounded\/} (respectively, $p${\it summable})
{\it Fredholm module\/} for a unital Banach $\ast$algebra, $A$, is a pair $(H,D)$
where $A$ is represented on the Hilbert space, $H$, and $D$ is an unbounded
selfadjoint operator on $H$ satisfying:
\item{(1)} $(1+D^2)^{1}$ is compact (respectively, $\Trace\bigl((1+D^2)^{(p/2)}\bigr)
<\infty$), and
\item{(2)} $\{a\in A\mid [D,a]$ is bounded$\}$ is a dense
$\ast$subalgebra of $A$.
If $u$ is a unitary in the dense $\ast$subalgebra mentioned in (2) then
$$
uDu^\ast=D+u[D,u^{\ast}]=D+B
$$
where $B$ is a bounded selfadjoint operator. The path
$$
D_t^u:=(1t) D+tuDu^\ast=D+tB
$$
is a ``continuous'' path of unbounded selfadjoint ``Fredholm'' operators.
More precisely, we show that
$$
F_t^u:=D_t^u \bigl(1+(D_t^u)^2\bigr)^{{1\over 2}}
$$
is a normcontinuous path of (bounded) selfadjoint Fredholm
operators. The {\it spectral flow\/} of this path $\{F_t^u\}$ (or $\{
D_t^u\}$) is roughly speaking the net number of eigenvalues that pass
through $0$ in the positive direction as $t$ runs from $0$ to $1$.
This integer,
$$
\sf(\{D_t^u\}):=\sf(\{F_t^u\}),
$$
recovers the pairing of the $K$homology class $[D]$ with the $K$theory
class [$u$].
We use I.~M.~Singer's idea (as did E.~Getzler in the $\theta$summable
case) to consider the operator $B$ as a parameter in the Banach manifold,
$B_{\sa}(H)$, so that spectral flow can be exhibited as the integral
of a closed $1$form on this manifold. Now, for $B$ in our manifold,
any $X\in T_B(B_{\sa}(H))$ is given by an $X$ in $B_{\sa}(H)$ as the
derivative at $B$ along the curve $t\mapsto B+tX$ in the manifold.
Then we show that for $m$ a sufficiently large halfinteger:
$$
\alpha (X)={1\over {\tilde {C}_m}}\Tr \Bigl(X\bigl(1+(D+B)^2\bigr)^{m}\Bigr)
$$
is a closed $1$form. For any piecewise smooth path $\{D_t=D+B_t\}$ with
$D_0$ and $D_1$ unitarily equivalent we show that
$$
\sf(\{D_t\})={1\over {\tilde {C}_m}} \int_0^1\Tr \Bigl({d\over {dt}}
(D_t)(1+D_t^2)^{m}\Bigr)\,dt
$$
the integral of the $1$form $\alpha$. If $D_0$ and $D_1$ are not unitarily
equivalent, we must add a pair of correction terms to the righthand
side. We also prove a bounded finitely summable version of the form:
$$
\sf(\{F_t\})={1\over C_n}\int_0^1\Tr\Bigl({d\over dt}(F_t)(1F_t^2)^n\Bigr)\,dt
$$
for $n\geq{{p1}\over 2}$ an integer. The unbounded case is proved by
reducing to the bounded case via the map $D\mapsto F=D(1+D^2
)^{{1\over 2}}$. We prove simultaneously a type II version of our
results.
Categories:46L80, 19K33, 47A30, 47A55 
