CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46L89 ( Other ``noncommutative'' mathematics based on $C^$-algebra theory [See also 58B32, 58B34, 58J22] *$-algebra theory [See also 58B32, 58B34, 58J22] * )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2013 (vol 65 pp. 1073)

Kalantar, Mehrdad; Neufang, Matthias
From Quantum Groups to Groups
In this paper we use the recent developments in the representation theory of locally compact quantum groups, to assign, to each locally compact quantum group $\mathbb{G}$, a locally compact group $\tilde {\mathbb{G}}$ which is the quantum version of point-masses, and is an invariant for the latter. We show that ``quantum point-masses" can be identified with several other locally compact groups that can be naturally assigned to the quantum group $\mathbb{G}$. This assignment preserves compactness as well as discreteness (hence also finiteness), and for large classes of quantum groups, amenability. We calculate this invariant for some of the most well-known examples of non-classical quantum groups. Also, we show that several structural properties of $\mathbb{G}$ are encoded by $\tilde {\mathbb{G}}$: the latter, despite being a simpler object, can carry very important information about $\mathbb{G}$.

Keywords:locally compact quantum group, locally compact group, von Neumann algebra
Category:46L89

2. CJM 2004 (vol 56 pp. 843)

Ruan, Zhong-Jin
Type Decomposition and the Rectangular AFD Property for $W^*$-TRO's
We study the type decomposition and the rectangular AFD property for $W^*$-TRO's. Like von Neumann algebras, every $W^*$-TRO can be uniquely decomposed into the direct sum of $W^*$-TRO's of type $I$, type $II$, and type $III$. We may further consider $W^*$-TRO's of type $I_{m, n}$ with cardinal numbers $m$ and $n$, and consider $W^*$-TRO's of type $II_{\lambda, \mu}$ with $\lambda, \mu = 1$ or $\infty$. It is shown that every separable stable $W^*$-TRO (which includes type $I_{\infty,\infty}$, type $II_{\infty, \infty}$ and type $III$) is TRO-isomorphic to a von Neumann algebra. We also introduce the rectangular version of the approximately finite dimensional property for $W^*$-TRO's. One of our major results is to show that a separable $W^*$-TRO is injective if and only if it is rectangularly approximately finite dimensional. As a consequence of this result, we show that a dual operator space is injective if and only if its operator predual is a rigid rectangular ${\OL}_{1, 1^+}$ space (equivalently, a rectangular

Categories:46L07, 46L08, 46L89

3. CJM 1999 (vol 51 pp. 850)

Muhly, Paul S.; Solel, Baruch
Tensor Algebras, Induced Representations, and the Wold Decomposition
Our objective in this sequel to \cite{MSp96a} is to develop extensions, to representations of tensor algebras over $C^{*}$-correspondences, of two fundamental facts about isometries on Hilbert space: The Wold decomposition theorem and Beurling's theorem, and to apply these to the analysis of the invariant subspace structure of certain subalgebras of Cuntz-Krieger algebras.

Keywords:tensor algebras, correspondence, induced representation, Wold decomposition, Beurling's theorem
Categories:46L05, 46L40, 46L89, 47D15, 47D25, 46M10, 46M99, 47A20, 47A45, 47B35

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/