1. CJM Online first
 Charlesworth, Ian; Nelson, Brent; Skoufranis, Paul

On twofaced families of noncommutative random variables
We demonstrate that the notions of bifree independence and combinatorialbifree
independence of twofaced families are equivalent using a diagrammatic
view of binoncrossing partitions.
These diagrams produce an operator model on a Fock space suitable
for representing any twofaced family of noncommutative random
variables.
Furthermore, using a Kreweras complement on binoncrossing partitions
we establish the expected formulas for the multiplicative convolution
of a bifree pair of twofaced families.
Keywords:free probability, operator algebras, bifree Category:46L54 

2. CJM 2012 (vol 65 pp. 863)
 JosuatVergès, Matthieu

Cumulants of the $q$semicircular Law, Tutte Polynomials, and Heaps
The $q$semicircular distribution is a probability law that
interpolates between the Gaussian law and the semicircular law. There
is a combinatorial interpretation of its moments in terms of matchings
where $q$ follows the number of crossings, whereas for the free
cumulants one has to restrict the enumeration to connected matchings.
The purpose of this article is to describe combinatorial properties of
the classical cumulants. We show that like the free cumulants, they
are obtained by an enumeration of connected matchings, the weight
being now an evaluation of the Tutte polynomial of a socalled
crossing graph. The case $q=0$ of these cumulants was studied by
Lassalle using symmetric functions and hypergeometric series. We show
that the underlying combinatorics is explained through the theory of
heaps, which is Viennot's geometric interpretation of the
CartierFoata monoid. This method also gives a general formula for
the cumulants in terms of free cumulants.
Keywords:moments, cumulants, matchings, Tutte polynomials, heaps Categories:05A18, 05C31, 46L54 

3. CJM 2011 (vol 63 pp. 551)
 Hadwin, Don; Li, Qihui; Shen, Junhao

Topological Free Entropy Dimensions in Nuclear C$^*$algebras and in Full Free Products of Unital C$^*$algebras
In the paper, we introduce a new concept,
topological orbit dimension of an $n$tuple of elements in a unital
C$^{\ast}$algebra. Using this concept, we conclude that Voiculescu's
topological free
entropy dimension of every finite family of selfadjoint generators of a
nuclear C$^{\ast}$algebra is less than or equal to $1$. We also show that the
Voiculescu's topological free entropy dimension is additive in the full free
product of some unital C$^{\ast}$algebras. We show that the unital full free
product of Blackadar and Kirchberg's unital MF
algebras is also an MF algebra. As an application, we obtain that
$\mathop{\textrm{Ext}}(C_{r}^{\ast}(F_{2})\ast_{\mathbb{C}}C_{r}^{\ast}(F_{2}))$ is not a group.
Keywords: topological free entropy dimension, unital C$^{*}$algebra Categories:46L10, 46L54 

4. CJM 2010 (vol 63 pp. 3)
 Banica, T.; Belinschi, S. T.; Capitaine, M.; Collins, B.

Free Bessel Laws
We introduce and study a remarkable family of real probability
measures $\pi_{st}$ that we call free Bessel laws. These are related
to the free Poisson law $\pi$ via the formulae
$\pi_{s1}=\pi^{\boxtimes s}$ and ${\pi_{1t}=\pi^{\boxplus t}}$. Our
study includes definition and basic properties, analytic aspects
(supports, atoms, densities), combinatorial aspects (functional
transforms, moments, partitions), and a discussion of the relation
with random matrices and quantum groups.
Keywords:Poisson law, Bessel function, Wishart matrix, quantum group Categories:46L54, 15A52, 16W30 

5. CJM 2001 (vol 53 pp. 355)
 Nica, Alexandru; Shlyakhtenko, Dimitri; Speicher, Roland

$R$Diagonal Elements and Freeness With Amalgamation
The concept of $R$diagonal element was introduced in \cite{NS2},
and was subsequently found to have applications to several problems
in free probability. In this paper we describe a new approach to
$R$diagonality, which relies on freeness with amalgamation.
The class of $R$diagonal elements is enlarged to contain examples
living in nontracial $*$probability spaces, such as the
generalized circular elements of \cite{Sh1}.
Category:46L54 
