Expand all Collapse all | Results 1 - 4 of 4 |
1. CJM 2011 (vol 63 pp. 798)
Representing Multipliers of the Fourier Algebra on Non-Commutative $L^p$ Spaces We show that the multiplier algebra of the Fourier algebra on a
locally compact group $G$ can be isometrically represented on a direct
sum on non-commutative $L^p$ spaces associated with the right von
Neumann algebra of $G$. The resulting image is the idealiser of the
image of the Fourier algebra. If these spaces are given their
canonical operator space structure, then we get a completely isometric
representation of the completely bounded multiplier algebra. We make
a careful study of the non-commutative $L^p$ spaces we construct and
show that they are completely isometric to those considered recently
by Forrest, Lee, and Samei. We improve a result of theirs about module
homomorphisms. We suggest a definition of a Figa-Talamanca-Herz
algebra built out of these non-commutative $L^p$ spaces, say
$A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to
$L^1(G)$, generalising the abelian situation.
Keywords:multiplier, Fourier algebra, non-commutative $L^p$ space, complex interpolation Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52 |
2. CJM 2004 (vol 56 pp. 983)
Fubini's Theorem for Ultraproducts \\of Noncommutative $L_p$-Spaces Let $(\M_i)_{i\in I}$, $(\N_j)_{j\in J}$ be families of von
Neumann algebras and $\U$, $\U'$ be ultrafilters in $I$, $J$,
respectively. Let $1\le p<\infty$ and $\nen$. Let $x_1$,\dots,$x_n$ in
$\prod L_p(\M_i)$ and $y_1$,\dots,$y_n$ in $\prod L_p(\N_j)$ be
bounded families. We show the following equality
$$
\lim_{i,\U} \lim_{j,\U'} \Big\| \summ_{k=1}^n x_k(i)\otimes
y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} = \lim_{j,\U'} \lim_{i,\U}
\Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} .
$$
For $p=1$ this Fubini type result is related to the local
reflexivity of duals of $C^*$-algebras. This fails for $p=\infty$.
Keywords:noncommutative $L_p$-spaces, ultraproducts Categories:46L52, 46B08, 46L07 |
3. CJM 2004 (vol 56 pp. 225)
Complex Uniform Convexity and Riesz Measure The norm on a Banach space gives rise to a subharmonic function on the
complex plane for which the distributional Laplacian gives a Riesz measure.
This measure is calculated explicitly here for Lebesgue $L^p$ spaces and the
von~Neumann-Schatten trace ideals. Banach spaces that are $q$-uniformly
$\PL$-convex in the sense of Davis, Garling and Tomczak-Jaegermann are
characterized in terms of the mass distribution of this measure. This gives
a new proof that the trace ideals $c^p$ are $2$-uniformly $\PL$-convex for
$1\leq p\leq 2$.
Keywords:subharmonic functions, Banach spaces, Schatten trace ideals Categories:46B20, 46L52 |
4. CJM 2001 (vol 53 pp. 979)
Ranks of Algebras of Continuous $C^*$-Algebra Valued Functions We prove a number of results about the stable and particularly the
real ranks of tensor products of \ca s under the assumption that one
of the factors is commutative. In particular, we prove the following:
{\raggedright
\begin{enumerate}[(5)]
\item[(1)] If $X$ is any locally compact $\sm$-compact Hausdorff space
and $A$ is any \ca, then\break
$\RR \bigl( C_0 (X) \otimes A \bigr) \leq
\dim (X) + \RR(A)$.
\item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is
any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$.
\item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any
nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$
for any unital \ca\ $A$.
\item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) =
1$, and $K_1 (A) = 0$, then\break
$\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$.
\item[(5)] There is a simple separable unital nuclear \ca\ $A$ such
that $\RR(A) = 1$ and\break
$\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$.
\end{enumerate}}
Categories:46L05, 46L52, 46L80, 19A13, 19B10 |