Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46L52 ( Noncommutative function spaces )

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM Online first

Daws, Matthew
Categorical aspects of quantum groups: multipliers and intrinsic groups
We show that the assignment of the (left) completely bounded multiplier algebra $M_{cb}^l(L^1(\mathbb G))$ to a locally compact quantum group $\mathbb G$, and the assignment of the intrinsic group, form functors between appropriate categories. Morphisms of locally compact quantum groups can be described by Hopf $*$-homomorphisms between universal $C^*$-algebras, by bicharacters, or by special sorts of coactions. We show that the whole theory of completely bounded multipliers can be lifted to the universal $C^*$-algebra level, and that then the different pictures of both multipliers (reduced, universal, and as centralisers) and morphisms interact in extremely natural ways. The intrinsic group of a quantum group can be realised as a class of multipliers, and so our techniques immediately apply. We also show how to think of the intrinsic group using the universal $C^*$-algebra picture, and then, again, show how the differing views on the intrinsic group interact naturally with morphisms. We show that the intrinsic group is the ``maximal classical'' quantum subgroup of a locally compact quantum group, show that it is even closed in the strong Vaes sense, and that the intrinsic group functor is an adjoint to the inclusion functor from locally compact groups to quantum groups.

Keywords:locally compact quantum group, morphism, intrinsic group, multiplier, centraliser
Categories:20G42, 22D25, 43A22, 43A35, 43A95, 46L52, 46L89, 47L25

2. CJM Online first

Runde, Volker; Viselter, Ami
On positive definiteness over locally compact quantum groups
The notion of positive-definite functions over locally compact quantum groups was recently introduced and studied by Daws and Salmi. Based on this work, we generalize various well-known results about positive-definite functions over groups to the quantum framework. Among these are theorems on "square roots" of positive-definite functions, comparison of various topologies, positive-definite measures and characterizations of amenability, and the separation property with respect to compact quantum subgroups.

Keywords:bicrossed product, locally compact quantum group, non-commutative $L^p$-space, positive-definite function, positive-definite measure, separation property
Categories:20G42, 22D25, 43A35, 46L51, 46L52, 46L89

3. CJM 2011 (vol 63 pp. 798)

Daws, Matthew
Representing Multipliers of the Fourier Algebra on Non-Commutative $L^p$ Spaces
We show that the multiplier algebra of the Fourier algebra on a locally compact group $G$ can be isometrically represented on a direct sum on non-commutative $L^p$ spaces associated with the right von Neumann algebra of $G$. The resulting image is the idealiser of the image of the Fourier algebra. If these spaces are given their canonical operator space structure, then we get a completely isometric representation of the completely bounded multiplier algebra. We make a careful study of the non-commutative $L^p$ spaces we construct and show that they are completely isometric to those considered recently by Forrest, Lee, and Samei. We improve a result of theirs about module homomorphisms. We suggest a definition of a Figa-Talamanca-Herz algebra built out of these non-commutative $L^p$ spaces, say $A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to $L^1(G)$, generalising the abelian situation.

Keywords:multiplier, Fourier algebra, non-commutative $L^p$ space, complex interpolation
Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52

4. CJM 2004 (vol 56 pp. 983)

Junge, Marius
Fubini's Theorem for Ultraproducts \\of Noncommutative $L_p$-Spaces
Let $(\M_i)_{i\in I}$, $(\N_j)_{j\in J}$ be families of von Neumann algebras and $\U$, $\U'$ be ultrafilters in $I$, $J$, respectively. Let $1\le p<\infty$ and $\nen$. Let $x_1$,\dots,$x_n$ in $\prod L_p(\M_i)$ and $y_1$,\dots,$y_n$ in $\prod L_p(\N_j)$ be bounded families. We show the following equality $$ \lim_{i,\U} \lim_{j,\U'} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} = \lim_{j,\U'} \lim_{i,\U} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} . $$ For $p=1$ this Fubini type result is related to the local reflexivity of duals of $C^*$-algebras. This fails for $p=\infty$.

Keywords:noncommutative $L_p$-spaces, ultraproducts
Categories:46L52, 46B08, 46L07

5. CJM 2004 (vol 56 pp. 225)

Blower, Gordon; Ransford, Thomas
Complex Uniform Convexity and Riesz Measure
The norm on a Banach space gives rise to a subharmonic function on the complex plane for which the distributional Laplacian gives a Riesz measure. This measure is calculated explicitly here for Lebesgue $L^p$ spaces and the von~Neumann-Schatten trace ideals. Banach spaces that are $q$-uniformly $\PL$-convex in the sense of Davis, Garling and Tomczak-Jaegermann are characterized in terms of the mass distribution of this measure. This gives a new proof that the trace ideals $c^p$ are $2$-uniformly $\PL$-convex for $1\leq p\leq 2$.

Keywords:subharmonic functions, Banach spaces, Schatten trace ideals
Categories:46B20, 46L52

6. CJM 2001 (vol 53 pp. 979)

Nagisa, Masaru; Osaka, Hiroyuki; Phillips, N. Christopher
Ranks of Algebras of Continuous $C^*$-Algebra Valued Functions
We prove a number of results about the stable and particularly the real ranks of tensor products of \ca s under the assumption that one of the factors is commutative. In particular, we prove the following: {\raggedright \begin{enumerate}[(5)] \item[(1)] If $X$ is any locally compact $\sm$-compact Hausdorff space and $A$ is any \ca, then\break $\RR \bigl( C_0 (X) \otimes A \bigr) \leq \dim (X) + \RR(A)$. \item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$. \item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$ for any unital \ca\ $A$. \item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) = 1$, and $K_1 (A) = 0$, then\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \item[(5)] There is a simple separable unital nuclear \ca\ $A$ such that $\RR(A) = 1$ and\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \end{enumerate}}

Categories:46L05, 46L52, 46L80, 19A13, 19B10

© Canadian Mathematical Society, 2015 :