Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46L10 ( General theory of von Neumann algebras )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2011 (vol 64 pp. 455)

Sherman, David
On Cardinal Invariants and Generators for von Neumann Algebras
We demonstrate how most common cardinal invariants associated with a von Neumann algebra $\mathcal M$ can be computed from the decomposability number, $\operatorname{dens}(\mathcal M)$, and the minimal cardinality of a generating set, $\operatorname{gen}(\mathcal M)$. Applications include the equivalence of the well-known generator problem, ``Is every separably-acting von Neumann algebra singly-generated?", with the formally stronger questions, ``Is every countably-generated von Neumann algebra singly-generated?" and ``Is the $\operatorname{gen}$ invariant monotone?" Modulo the generator problem, we determine the range of the invariant $\bigl( \operatorname{gen}(\mathcal M), \operatorname{dens}(\mathcal M) \bigr)$, which is mostly governed by the inequality $\operatorname{dens}(\mathcal M) \leq \mathfrak C^{\operatorname{gen}(\mathcal M)}$.

Keywords:von Neumann algebra, cardinal invariant, generator problem, decomposability number, representation density

2. CJM 2011 (vol 63 pp. 551)

Hadwin, Don; Li, Qihui; Shen, Junhao
Topological Free Entropy Dimensions in Nuclear C$^*$-algebras and in Full Free Products of Unital C$^*$-algebras
In the paper, we introduce a new concept, topological orbit dimension of an $n$-tuple of elements in a unital C$^{\ast}$-algebra. Using this concept, we conclude that Voiculescu's topological free entropy dimension of every finite family of self-adjoint generators of a nuclear C$^{\ast}$-algebra is less than or equal to $1$. We also show that the Voiculescu's topological free entropy dimension is additive in the full free product of some unital C$^{\ast}$-algebras. We show that the unital full free product of Blackadar and Kirchberg's unital MF algebras is also an MF algebra. As an application, we obtain that $\mathop{\textrm{Ext}}(C_{r}^{\ast}(F_{2})\ast_{\mathbb{C}}C_{r}^{\ast}(F_{2}))$ is not a group.

Keywords: topological free entropy dimension, unital C$^{*}$-algebra
Categories:46L10, 46L54

3. CJM 2006 (vol 58 pp. 768)

Hu, Zhiguo; Neufang, Matthias
Decomposability of von Neumann Algebras and the Mazur Property of Higher Level
The decomposability number of a von Neumann algebra $\m$ (denoted by $\dec(\m)$) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in $\m$. In this paper, we explore the close connection between $\dec(\m)$ and the cardinal level of the Mazur property for the predual $\m_*$ of $\m$, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group $G$ as the group algebra $\lone$, the Fourier algebra $A(G)$, the measure algebra $M(G)$, the algebra $\luc^*$, etc. We show that for any of these von Neumann algebras, say $\m$, the cardinal number $\dec(\m)$ and a certain cardinal level of the Mazur property of $\m_*$ are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of $G$: the compact covering number $\kg$ of $G$ and the least cardinality $\bg$ of an open basis at the identity of $G$. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra $\ag^{**}$.

Keywords:Mazur property, predual of a von Neumann algebra, locally compact group and its cardinal invariants, group algebra, Fourier algebra, topological centre
Categories:22D05, 43A20, 43A30, 03E55, 46L10

© Canadian Mathematical Society, 2014 :