Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46L08 ( $C^$-modules *$-modules * )

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2011 (vol 64 pp. 573)

Nawata, Norio
Fundamental Group of Simple $C^*$-algebras with Unique Trace III
We introduce the fundamental group ${\mathcal F}(A)$ of a simple $\sigma$-unital $C^*$-algebra $A$ with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of ``Fundamental Group of Simple $C^*$-algebras with Unique Trace I and II'' by Nawata and Watatani. Our definition in this paper makes sense for stably projectionless $C^*$-algebras. We show that there exist separable stably projectionless $C^*$-algebras such that their fundamental groups are equal to $\mathbb{R}_+^\times$ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.

Keywords:fundamental group, Picard group, Hilbert module, countable basis, stably projectionless algebra, dimension function
Categories:46L05, 46L08, 46L35

2. CJM 2011 (vol 63 pp. 381)

Ji, Kui ; Jiang, Chunlan
A Complete Classification of AI Algebras with the Ideal Property
Let $A$ be an AI algebra; that is, $A$ is the $\mbox{C}^{*}$-algebra inductive limit of a sequence $$ A_{1}\stackrel{\phi_{1,2}}{\longrightarrow}A_{2}\stackrel{\phi_{2,3}}{\longrightarrow}A_{3} \longrightarrow\cdots\longrightarrow A_{n}\longrightarrow\cdots, $$ where $A_{n}=\bigoplus_{i=1}^{k_n}M_{[n,i]}(C(X^{i}_n))$, $X^{i}_n$ are $[0,1]$, $k_n$, and $[n,i]$ are positive integers. Suppose that $A$ has the ideal property: each closed two-sided ideal of $A$ is generated by the projections inside the ideal, as a closed two-sided ideal. In this article, we give a complete classification of AI algebras with the ideal property.

Keywords:AI algebras, K-group, tracial state, ideal property, classification
Categories:46L35, 19K14, 46L05, 46L08

3. CJM 2006 (vol 58 pp. 1144)

Hamana, Masamichi
Partial $*$-Automorphisms, Normalizers, and Submodules in Monotone Complete $C^*$-Algebras
For monotone complete $C^*$-algebras $A\subset B$ with $A$ contained in $B$ as a monotone closed $C^*$-subalgebra, the relation $X = AsA$ gives a bijection between the set of all monotone closed linear subspaces $X$ of $B$ such that $AX + XA \subset X$ and $XX^* + X^*X \subset A$ and a set of certain partial isometries $s$ in the ``normalizer" of $A$ in $B$, and similarly for the map $s \mapsto \Ad s$ between the latter set and a set of certain ``partial $*$-automorphisms" of $A$. We introduce natural inverse semigroup structures in the set of such $X$'s and the set of partial $*$-automorphisms of $A$, modulo a certain relation, so that the composition of these maps induces an inverse semigroup homomorphism between them. For a large enough $B$ the homomorphism becomes surjective and all the partial $*$-automorphisms of $A$ are realized via partial isometries in $B$. In particular, the inverse semigroup associated with a type ${\rm II}_1$ von Neumann factor, modulo the outer automorphism group, can be viewed as the fundamental group of the factor. We also consider the $C^*$-algebra version of these results.

Categories:46L05, 46L08, 46L40, 20M18

4. CJM 2005 (vol 57 pp. 983)

an Huef, Astrid; Raeburn, Iain; Williams, Dana P.
A Symmetric Imprimitivity Theorem for Commuting Proper Actions
We prove a symmetric imprimitivity theorem for commuting proper actions of locally compact groups $H$ and $K$ on a $C^*$-algebra.

Categories:46L05, 46L08, 46L55

5. CJM 2004 (vol 56 pp. 843)

Ruan, Zhong-Jin
Type Decomposition and the Rectangular AFD Property for $W^*$-TRO's
We study the type decomposition and the rectangular AFD property for $W^*$-TRO's. Like von Neumann algebras, every $W^*$-TRO can be uniquely decomposed into the direct sum of $W^*$-TRO's of type $I$, type $II$, and type $III$. We may further consider $W^*$-TRO's of type $I_{m, n}$ with cardinal numbers $m$ and $n$, and consider $W^*$-TRO's of type $II_{\lambda, \mu}$ with $\lambda, \mu = 1$ or $\infty$. It is shown that every separable stable $W^*$-TRO (which includes type $I_{\infty,\infty}$, type $II_{\infty, \infty}$ and type $III$) is TRO-isomorphic to a von Neumann algebra. We also introduce the rectangular version of the approximately finite dimensional property for $W^*$-TRO's. One of our major results is to show that a separable $W^*$-TRO is injective if and only if it is rectangularly approximately finite dimensional. As a consequence of this result, we show that a dual operator space is injective if and only if its operator predual is a rigid rectangular ${\OL}_{1, 1^+}$ space (equivalently, a rectangular

Categories:46L07, 46L08, 46L89

© Canadian Mathematical Society, 2014 :