CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46L05 ( General theory of $C^$-algebras *$-algebras * )

  Expand all        Collapse all Results 1 - 25 of 29

1. CJM 2013 (vol 66 pp. 596)

Eilers, Søren; Restorff, Gunnar; Ruiz, Efren
The Ordered $K$-theory of a Full Extension
Let $\mathfrak{A}$ be a $C^{*}$-algebra with real rank zero which has the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the corona factorization property. We prove that $ 0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0 $ is a full extension if and only if the extension is stenotic and $K$-lexicographic. {As an immediate application, we extend the classification result for graph $C^*$-algebras obtained by Tomforde and the first named author to the general non-unital case. In combination with recent results by Katsura, Tomforde, West and the first author, our result may also be used to give a purely $K$-theoretical description of when an essential extension of two simple and stable graph $C^*$-algebras is again a graph $C^*$-algebra.}

Keywords:classification, extensions, graph algebras
Categories:46L80, 46L35, 46L05

2. CJM 2013 (vol 65 pp. 783)

Garcés, Jorge J.; Peralta, Antonio M.
Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach triple systems as a concept which extends the notion of generalised homomorphism between Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively. We prove that every generalised triple homomorphism between JB$^*$-triples is automatically continuous. When particularised to C$^*$-algebras, we rediscover one of the main theorems established by B.E. Johnson. We shall also consider generalised triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$-module, proving that every generalised triple derivation from a JB$^*$-triple $E$ into itself or into $E^*$ is automatically continuous.

Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$-algebra, JB$^*$-triple
Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49

3. CJM 2012 (vol 65 pp. 481)

Ara, Pere; Dykema, Kenneth J.; Rørdam, Mikael
Correction of Proofs in "Purely Infinite Simple $C^*$-algebras Arising from Free Product Constructions'' and a Subsequent Paper
The proofs of Theorem 2.2 of K. J. Dykema and M. Rørdam, Purely infinite simple $C^*$-algebras arising from free product constructions}, Canad. J. Math. 50 (1998), 323--341 and of Theorem 3.1 of K. J. Dykema, Purely infinite simple $C^*$-algebras arising from free product constructions, II, Math. Scand. 90 (2002), 73--86 are corrected.

Keywords:C*-algebras, purely infinite
Category:46L05

4. CJM 2012 (vol 65 pp. 52)

Christensen, Erik; Sinclair, Allan M.; Smith, Roger R.; White, Stuart
C$^*$-algebras Nearly Contained in Type $\mathrm{I}$ Algebras
In this paper we consider near inclusions $A\subseteq_\gamma B$ of C$^*$-algebras. We show that if $B$ is a separable type $\mathrm{I}$ C$^*$-algebra and $A$ satisfies Kadison's similarity problem, then $A$ is also type $\mathrm{I}$ and use this to obtain an embedding of $A$ into $B$.

Keywords:C$^*$-algebras, near inclusions, perturbations, type I C$^*$-algebras, similarity problem
Category:46L05

5. CJM 2011 (vol 64 pp. 755)

Brown, Lawrence G.; Lee, Hyun Ho
Homotopy Classification of Projections in the Corona Algebra of a Non-simple $C^*$-algebra
We study projections in the corona algebra of $C(X)\otimes K$, where K is the $C^*$-algebra of compact operators on a separable infinite dimensional Hilbert space and $X=[0,1],[0,\infty),(-\infty,\infty)$, or $[0,1]/\{ 0,1 \}$. Using BDF's essential codimension, we determine conditions for a projection in the corona algebra to be liftable to a projection in the multiplier algebra. We also determine the conditions for two projections to be equal in $K_0$, Murray-von Neumann equivalent, unitarily equivalent, or homotopic. In light of these characterizations, we construct examples showing that the equivalence notions above are all distinct.

Keywords:essential codimension, continuous field of Hilbert spaces, Corona algebra
Categories:46L05, 46L80

6. CJM 2011 (vol 64 pp. 544)

Li, Zhiqiang
On the Simple Inductive Limits of Splitting Interval Algebras with Dimension Drops
A K-theoretic classification is given of the simple inductive limits of finite direct sums of the type I $C^*$-algebras known as splitting interval algebras with dimension drops. (These are the subhomogeneous $C^*$-algebras, each having spectrum a finite union of points and an open interval, and torsion $\textrm{K}_1$-group.)

Categories:46L05, 46L35

7. CJM 2011 (vol 64 pp. 573)

Nawata, Norio
Fundamental Group of Simple $C^*$-algebras with Unique Trace III
We introduce the fundamental group ${\mathcal F}(A)$ of a simple $\sigma$-unital $C^*$-algebra $A$ with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of ``Fundamental Group of Simple $C^*$-algebras with Unique Trace I and II'' by Nawata and Watatani. Our definition in this paper makes sense for stably projectionless $C^*$-algebras. We show that there exist separable stably projectionless $C^*$-algebras such that their fundamental groups are equal to $\mathbb{R}_+^\times$ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.

Keywords:fundamental group, Picard group, Hilbert module, countable basis, stably projectionless algebra, dimension function
Categories:46L05, 46L08, 46L35

8. CJM 2011 (vol 63 pp. 381)

Ji, Kui ; Jiang, Chunlan
A Complete Classification of AI Algebras with the Ideal Property
Let $A$ be an AI algebra; that is, $A$ is the $\mbox{C}^{*}$-algebra inductive limit of a sequence $$ A_{1}\stackrel{\phi_{1,2}}{\longrightarrow}A_{2}\stackrel{\phi_{2,3}}{\longrightarrow}A_{3} \longrightarrow\cdots\longrightarrow A_{n}\longrightarrow\cdots, $$ where $A_{n}=\bigoplus_{i=1}^{k_n}M_{[n,i]}(C(X^{i}_n))$, $X^{i}_n$ are $[0,1]$, $k_n$, and $[n,i]$ are positive integers. Suppose that $A$ has the ideal property: each closed two-sided ideal of $A$ is generated by the projections inside the ideal, as a closed two-sided ideal. In this article, we give a complete classification of AI algebras with the ideal property.

Keywords:AI algebras, K-group, tracial state, ideal property, classification
Categories:46L35, 19K14, 46L05, 46L08

9. CJM 2010 (vol 62 pp. 889)

Xia, Jingbo
Singular Integral Operators and Essential Commutativity on the Sphere
Let ${\mathcal T}$ be the $C^\ast $-algebra generated by the Toeplitz operators $\{T_\varphi : \varphi \in L^\infty (S,d\sigma )\}$ on the Hardy space $H^2(S)$ of the unit sphere in $\mathbf{C}^n$. It is well known that ${\mathcal T}$ is contained in the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$. We show that the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$ is strictly larger than ${\mathcal T}$.

Categories:32A55, 46L05, 47L80

10. CJM 2009 (vol 61 pp. 1239)

Davidson, Kenneth R.; Yang, Dilian
Periodicity in Rank 2 Graph Algebras
Kumjian and Pask introduced an aperiodicity condition for higher rank graphs. We present a detailed analysis of when this occurs in certain rank 2 graphs. When the algebra is aperiodic, we give another proof of the simplicity of $\mathrm{C}^*(\mathbb{F}^+_{\theta})$. The periodic $\mathrm{C}^*$-algebras are characterized, and it is shown that $\mathrm{C}^*(\mathbb{F}^+_{\theta}) \simeq \mathrm{C}(\mathbb{T})\otimes\mathfrak{A}$ where $\mathfrak{A}$ is a simple $\mathrm{C}^*$-algebra.

Keywords:higher rank graph, aperiodicity condition, simple $\mathrm{C}^*$-algebra, expectation
Categories:47L55, 47L30, 47L75, 46L05

11. CJM 2008 (vol 60 pp. 975)

Boca, Florin P.
An AF Algebra Associated with the Farey Tessellation
We associate with the Farey tessellation of the upper half-plane an AF algebra $\AA$ encoding the ``cutting sequences'' that define vertical geodesics. The Effros--Shen AF algebras arise as quotients of $\AA$. Using the path algebra model for AF algebras we construct, for each $\tau \in \big(0,\frac{1}{4}\big]$, projections $(E_n)$ in $\AA$ such that $E_n E_{n\pm 1}E_n \leq \tau E_n$.

Categories:46L05, 11A55, 11B57, 46L55, 37E05, 82B20

12. CJM 2007 (vol 59 pp. 343)

Lin, Huaxin
Weak Semiprojectivity in Purely Infinite Simple $C^*$-Algebras
Let $A$ be a separable amenable purely infinite simple \CA which satisfies the Universal Coefficient Theorem. We prove that $A$ is weakly semiprojective if and only if $K_i(A)$ is a countable direct sum of finitely generated groups ($i=0,1$). Therefore, if $A$ is such a \CA, for any $\ep>0$ and any finite subset ${\mathcal F}\subset A$ there exist $\dt>0$ and a finite subset ${\mathcal G}\subset A$ satisfying the following: for any contractive positive linear map $L: A\to B$ (for any \CA $B$) with $ \|L(ab)-L(a)L(b)\|<\dt$ for $a, b\in {\mathcal G}$ there exists a homomorphism $h\from A\to B$ such that $ \|h(a)-L(a)\|<\ep$ for $a\in {\mathcal F}$.

Keywords:weakly semiprojective, purely infinite simple $C^*$-algebras
Categories:46L05, 46L80

13. CJM 2006 (vol 58 pp. 1268)

Sims, Aidan
Gauge-Invariant Ideals in the $C^*$-Algebras of Finitely Aligned Higher-Rank Graphs
We produce a complete description of the lattice of gauge-invariant ideals in $C^*(\Lambda)$ for a finitely aligned $k$-graph $\Lambda$. We provide a condition on $\Lambda$ under which every ideal is gauge-invariant. We give conditions on $\Lambda$ under which $C^*(\Lambda)$ satisfies the hypotheses of the Kirchberg--Phillips classification theorem.

Keywords:Graphs as categories, graph algebra, $C^*$-algebra
Category:46L05

14. CJM 2006 (vol 58 pp. 1144)

Hamana, Masamichi
Partial $*$-Automorphisms, Normalizers, and Submodules in Monotone Complete $C^*$-Algebras
For monotone complete $C^*$-algebras $A\subset B$ with $A$ contained in $B$ as a monotone closed $C^*$-subalgebra, the relation $X = AsA$ gives a bijection between the set of all monotone closed linear subspaces $X$ of $B$ such that $AX + XA \subset X$ and $XX^* + X^*X \subset A$ and a set of certain partial isometries $s$ in the ``normalizer" of $A$ in $B$, and similarly for the map $s \mapsto \Ad s$ between the latter set and a set of certain ``partial $*$-automorphisms" of $A$. We introduce natural inverse semigroup structures in the set of such $X$'s and the set of partial $*$-automorphisms of $A$, modulo a certain relation, so that the composition of these maps induces an inverse semigroup homomorphism between them. For a large enough $B$ the homomorphism becomes surjective and all the partial $*$-automorphisms of $A$ are realized via partial isometries in $B$. In particular, the inverse semigroup associated with a type ${\rm II}_1$ von Neumann factor, modulo the outer automorphism group, can be viewed as the fundamental group of the factor. We also consider the $C^*$-algebra version of these results.

Categories:46L05, 46L08, 46L40, 20M18

15. CJM 2005 (vol 57 pp. 983)

an Huef, Astrid; Raeburn, Iain; Williams, Dana P.
A Symmetric Imprimitivity Theorem for Commuting Proper Actions
We prove a symmetric imprimitivity theorem for commuting proper actions of locally compact groups $H$ and $K$ on a $C^*$-algebra.

Categories:46L05, 46L08, 46L55

16. CJM 2005 (vol 57 pp. 351)

Lin, Huaxin
Extensions by Simple $C^*$-Algebras: Quasidiagonal Extensions
Let $A$ be an amenable separable $C^*$-algebra and $B$ be a non-unital but $\sigma$-unital simple $C^*$-algebra with continuous scale. We show that two essential extensions $\tau_1$ and $\tau_2$ of $A$ by $B$ are approximately unitarily equivalent if and only if $$ [\tau_1]=[\tau_2] \text{ in } KL(A, M(B)/B). $$ If $A$ is assumed to satisfy the Universal Coefficient Theorem, there is a bijection from approximate unitary equivalence classes of the above mentioned extensions to $KL(A, M(B)/B)$. Using $KL(A, M(B)/B)$, we compute exactly when an essential extension is quasidiagonal. We show that quasidiagonal extensions may not be approximately trivial. We also study the approximately trivial extensions.

Keywords:Extensions, Simple $C^*$-algebras
Categories:46L05, 46L35

17. CJM 2005 (vol 57 pp. 17)

Bédos, Erik; Conti, Roberto; Tuset, Lars
On Amenability and Co-Amenability of Algebraic Quantum Groups and Their Corepresentations
We introduce and study several notions of amenability for unitary corepresentations and $*$-representations of algebraic quantum groups, which may be used to characterize amenability and co-amenability for such quantum groups. As a background for this study, we investigate the associated tensor C$^{*}$-categories.

Keywords:quantum group, amenability
Categories:46L05, 46L65, 22D10, 22D25, 43A07, 43A65, 58B32

18. CJM 2004 (vol 56 pp. 3)

Amini, Massoud
Locally Compact Pro-$C^*$-Algebras
Let $X$ be a locally compact non-compact Hausdorff topological space. Consider the algebras $C(X)$, $C_b(X)$, $C_0(X)$, and $C_{00}(X)$ of respectively arbitrary, bounded, vanishing at infinity, and compactly supported continuous functions on $X$. Of these, the second and third are $C^*$-algebras, the fourth is a normed algebra, whereas the first is only a topological algebra (it is indeed a pro-$C^\ast$-algebra). The interesting fact about these algebras is that if one of them is given, the others can be obtained using functional analysis tools. For instance, given the $C^\ast$-algebra $C_0(X)$, one can get the other three algebras by $C_{00}(X)=K\bigl(C_0(X)\bigr)$, $C_b(X)=M\bigl(C_0(X)\bigr)$, $C(X)=\Gamma\bigl( K(C_0(X))\bigr)$, where the right hand sides are the Pedersen ideal, the multiplier algebra, and the unbounded multiplier algebra of the Pedersen ideal of $C_0(X)$, respectively. In this article we consider the possibility of these transitions for general $C^\ast$-algebras. The difficult part is to start with a pro-$C^\ast$-algebra $A$ and to construct a $C^\ast$-algebra $A_0$ such that $A=\Gamma\bigl(K(A_0)\bigr)$. The pro-$C^\ast$-algebras for which this is possible are called {\it locally compact\/} and we have characterized them using a concept similar to that of an approximate identity.

Keywords:pro-$C^\ast$-algebras, projective limit, multipliers of Pedersen's ideal
Categories:46L05, 46M40

19. CJM 2003 (vol 55 pp. 1302)

Katsura, Takeshi
The Ideal Structures of Crossed Products of Cuntz Algebras by Quasi-Free Actions of Abelian Groups
We completely determine the ideal structures of the crossed products of Cuntz algebras by quasi-free actions of abelian groups and give another proof of A.~Kishimoto's result on the simplicity of such crossed products. We also give a necessary and sufficient condition that our algebras become primitive, and compute the Connes spectra and $K$-groups of our algebras.

Categories:46L05, 46L55, 46L45

20. CJM 2002 (vol 54 pp. 694)

Gabriel, Michael J.
Cuntz Algebra States Defined by Implementers of Endomorphisms of the $\CAR$ Algebra
We investigate representations of the Cuntz algebra $\mathcal{O}_2$ on antisymmetric Fock space $F_a (\mathcal{K}_1)$ defined by isometric implementers of certain quasi-free endomorphisms of the CAR algebra in pure quasi-free states $\varphi_{P_1}$. We pay corresponding to these representations and the Fock special attention to the vector states on $\mathcal{O}_2$ vacuum, for which we obtain explicit formulae. Restricting these states to the gauge-invariant subalgebra $\mathcal{F}_2$, we find that for natural choices of implementers, they are again pure quasi-free and are, in fact, essentially the states $\varphi_{P_1}$. We proceed to consider the case for an arbitrary pair of implementers, and deduce that these Cuntz algebra representations are irreducible, as are their restrictions to $\mathcal{F}_2$. The endomorphisms of $B \bigl( F_a (\mathcal{K}_1) \bigr)$ associated with these representations of $\mathcal{O}_2$ are also considered.

Categories:46L05, 46L30

21. CJM 2002 (vol 54 pp. 138)

Razak, Shaloub
On the Classification of Simple Stably Projectionless $\C^*$-Algebras
It is shown that simple stably projectionless $\C^S*$-algebras which are inductive limits of certain specified building blocks with trivial $\K$-theory are classified by their cone of positive traces with distinguished subset. This is the first example of an isomorphism theorem verifying the conjecture of Elliott for a subclass of the stably projectionless algebras.

Categories:46L35, 46L05

22. CJM 2001 (vol 53 pp. 1223)

Mygind, Jesper
Classification of Certain Simple $C^*$-Algebras with Torsion in $K_1$
We show that the Elliott invariant is a classifying invariant for the class of $C^*$-algebras that are simple unital infinite dimensional inductive limits of finite direct sums of building blocks of the form $$ \{f \in C(\T) \otimes M_n : f(x_i) \in M_{d_i}, i = 1,2,\dots,N\}, $$ where $x_1,x_2,\dots,x_N \in \T$, $d_1,d_2,\dots,d_N$ are integers dividing $n$, and $M_{d_i}$ is embedded unitally into $M_n$. Furthermore we prove existence and uniqueness theorems for $*$-homomorphisms between such algebras and we identify the range of the invariant.

Categories:46L80, 19K14, 46L05

23. CJM 2001 (vol 53 pp. 979)

Nagisa, Masaru; Osaka, Hiroyuki; Phillips, N. Christopher
Ranks of Algebras of Continuous $C^*$-Algebra Valued Functions
We prove a number of results about the stable and particularly the real ranks of tensor products of \ca s under the assumption that one of the factors is commutative. In particular, we prove the following: {\raggedright \begin{enumerate}[(5)] \item[(1)] If $X$ is any locally compact $\sm$-compact Hausdorff space and $A$ is any \ca, then\break $\RR \bigl( C_0 (X) \otimes A \bigr) \leq \dim (X) + \RR(A)$. \item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$. \item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$ for any unital \ca\ $A$. \item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) = 1$, and $K_1 (A) = 0$, then\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \item[(5)] There is a simple separable unital nuclear \ca\ $A$ such that $\RR(A) = 1$ and\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \end{enumerate}}

Categories:46L05, 46L52, 46L80, 19A13, 19B10

24. CJM 2001 (vol 53 pp. 592)

Perera, Francesc
Ideal Structure of Multiplier Algebras of Simple $C^*$-algebras With Real Rank Zero
We give a description of the monoid of Murray-von Neumann equivalence classes of projections for multiplier algebras of a wide class of $\sigma$-unital simple $C^\ast$-algebras $A$ with real rank zero and stable rank one. The lattice of ideals of this monoid, which is known to be crucial for understanding the ideal structure of the multiplier algebra $\mul$, is therefore analyzed. In important cases it is shown that, if $A$ has finite scale then the quotient of $\mul$ modulo any closed ideal $I$ that properly contains $A$ has stable rank one. The intricacy of the ideal structure of $\mul$ is reflected in the fact that $\mul$ can have uncountably many different quotients, each one having uncountably many closed ideals forming a chain with respect to inclusion.

Keywords:$C^\ast$-algebra, multiplier algebra, real rank zero, stable rank, refinement monoid
Categories:46L05, 46L80, 06F05

25. CJM 2001 (vol 53 pp. 161)

Lin, Huaxin
Classification of Simple Tracially AF $C^*$-Algebras
We prove that pre-classifiable (see 3.1) simple nuclear tracially AF \CA s (TAF) are classified by their $K$-theory. As a consequence all simple, locally AH and TAF \CA s are in fact AH algebras (it is known that there are locally AH algebras that are not AH). We also prove the following Rationalization Theorem. Let $A$ and $B$ be two unital separable nuclear simple TAF \CA s with unique normalized traces satisfying the Universal Coefficient Theorem. If $A$ and $B$ have the same (ordered and scaled) $K$-theory and $K_0 (A)_+$ is locally finitely generated, then $A \otimes Q \cong B \otimes Q$, where $Q$ is the UHF-algebra with the rational $K_0$. Classification results (with restriction on $K_0$-theory) for the above \CA s are also obtained. For example, we show that, if $A$ and $B$ are unital nuclear separable simple TAF \CA s with the unique normalized trace satisfying the UCT and with $K_1(A) = K_1(B)$, and $A$ and $B$ have the same rational (scaled ordered) $K_0$, then $A \cong B$. Similar results are also obtained for some cases in which $K_0$ is non-divisible such as $K_0(A) = \mathbf{Z} [1/2]$.

Categories:46L05, 46L35
Page
   1 2    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/