CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46J20 ( Ideals, maximal ideals, boundaries )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2006 (vol 58 pp. 859)

Read, C. J.
Nonstandard Ideals from Nonstandard Dual Pairs for $L^1(\omega)$ and $l^1(\omega)$
The Banach convolution algebras $l^1(\omega)$ and their continuous counterparts $L^1(\bR^+,\omega)$ are much studied, because (when the submultiplicative weight function $\omega$ is radical) they are pretty much the prototypic examples of commutative radical Banach algebras. In cases of ``nice'' weights $\omega$, the only closed ideals they have are the obvious, or ``standard'', ideals. But in the general case, a brilliant but very difficult paper of Marc Thomas shows that nonstandard ideals exist in $l^1(\omega)$. His proof was successfully exported to the continuous case $L^1(\bR^+,\omega)$ by Dales and McClure, but remained difficult. In this paper we first present a small improvement: a new and easier proof of the existence of nonstandard ideals in $l^1(\omega)$ and $L^1(\bR^+,\omega)$. The new proof is based on the idea of a ``nonstandard dual pair'' which we introduce. We are then able to make a much larger improvement: we find nonstandard ideals in $L^1(\bR^+,\omega)$ containing functions whose supports extend all the way down to zero in $\bR^+$, thereby solving what has become a notorious problem in the area.

Keywords:Banach algebra, radical, ideal, standard ideal, semigroup
Categories:46J45, 46J20, 47A15

2. CJM 2004 (vol 56 pp. 1121)

Chaumat, Jacques; Chollet, Anne-Marie
Division par un polynôme hyperbolique
On se donne un intervalle ouvert non vide $\omega$ de $\mathbb R$, un ouvert connexe non vide $\Omega$ de $\mathbb R_s$ et un polyn\^ome unitaire \[ P_m(z, \lambda) = z^m + a_1(\lambda)z^{m-1} = +\dots + a_{m-1}(\lambda) z + a_m(\lambda), \] de degr\'e $m>0$, d\'ependant du param\`etre $\lambda \in \Omega$. Un tel polyn\^ome est dit $\omega$-hyperbolique si, pour tout $\lambda \in \Omega$, ses racines sont r\'eelles et appartiennent \`a $\omega$. On suppose que les fonctions $a_k, \, k=1, \dots, m$, appartiennent \`a une classe ultradiff\'erentiable $C_M(\Omega)$. On s`int\'eresse au probl\`eme suivant. Soit $f$ appartient \`a $C_M(\Omega)$, existe-t-il des fonctions $Q_f$ et $R_{f,k},\, k=0, \dots, m-1$, appartenant respectivement \`a $C_M(\omega \times \Omega)$ et \`a $C_M(\Omega)$, telles que l'on ait, pour $(x,\lambda) \in \omega \times \Omega$, \[ f(x) = P_m(x,\lambda) Q_f (x,\lambda) + \sum^{m-1}_{k=0} x^k R_{f,k}(\lambda)~? \] On donne ici une r\'eponse positive d\`es que le polyn\^ome est $\omega$-hyperbolique, que la class untradiff\'eren\-tiable soit quasi-analytique ou non ; on obtient alors, des exemples d'id\'eaux ferm\'es dans $C_M(\mathbb R^n)$. On compl\`ete ce travail par une g\'en\'eralisation d'un r\'esultat de C.~L. Childress dans le cadre quasi-analytique et quelques remarques.

Categories:26E10, 46E25, 46J20

3. CJM 1999 (vol 51 pp. 147)

Suárez, Daniel
Homeomorphic Analytic Maps into the Maximal Ideal Space of $H^\infty$
Let $m$ be a point of the maximal ideal space of $\papa$ with nontrivial Gleason part $P(m)$. If $L_m \colon \disc \rr P(m)$ is the Hoffman map, we show that $\papa \circ L_m$ is a closed subalgebra of $\papa$. We characterize the points $m$ for which $L_m$ is a homeomorphism in terms of interpolating sequences, and we show that in this case $\papa \circ L_m$ coincides with $\papa$. Also, if $I_m$ is the ideal of functions in $\papa$ that identically vanish on $P(m)$, we estimate the distance of any $f\in \papa$ to $I_m$.

Categories:30H05, 46J20

© Canadian Mathematical Society, 2014 : https://cms.math.ca/