CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46E40 ( Spaces of vector- and operator-valued functions )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2010 (vol 62 pp. 827)

Ouyang, Caiheng; Xu, Quanhua
BMO Functions and Carleson Measures with Values in Uniformly Convex Spaces
This paper studies the relationship between vector-valued BMO functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $\mathbf{T}$, respectively. For $1< q<\infty$ and a Banach space $B$, we prove that there exists a positive constant $c$ such that $$\sup_{z_0\in D}\int_{D}(1-|z|)^{q-1}\|\nabla f(z)\|^q P_{z_0}(z) dA(z) \le c^q\sup_{z_0\in D}\int_{\mathbf{T}}\|f(z)-f(z_0)\|^qP_{z_0}(z) dm(z)$$ holds for all trigonometric polynomials $f$ with coefficients in $B$ if and only if $B$ admits an equivalent norm which is $q$-uniformly convex, where $$P_{z_0}(z)=\frac{1-|z_0|^2}{|1-\bar{z_0}z|^2} .$$ The validity of the converse inequality is equivalent to the existence of an equivalent $q$-uniformly smooth norm.

Keywords:BMO, Carleson measures, Lusin type, Lusin cotype, uniformly convex spaces, uniformly smooth spaces
Categories:46E40, 42B25, 46B20

2. CJM 2003 (vol 55 pp. 969)

Glöckner, Helge
Lie Groups of Measurable Mappings
We describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space $(X,\Sigma,\mu)$ and (possibly infinite-dimensional) Lie group $G$, we construct a Lie group $L^\infty (X,G)$, which is a Fr\'echet-Lie group if $G$ is so. We also show that the weak direct product $\prod^*_{i\in I} G_i$ of an arbitrary family $(G_i)_{i\in I}$ of Lie groups can be made a Lie group, modelled on the locally convex direct sum $\bigoplus_{i\in I} L(G_i)$.

Categories:22E65, 46E40, 46E30, 22E67, 46T20, 46T25

3. CJM 2002 (vol 54 pp. 1165)

Blasco, Oscar; Arregui, José Luis
Multipliers on Vector Valued Bergman Spaces
Let $X$ be a complex Banach space and let $B_p(X)$ denote the vector-valued Bergman space on the unit disc for $1\le p<\infty$. A sequence $(T_n)_n$ of bounded operators between two Banach spaces $X$ and $Y$ defines a multiplier between $B_p(X)$ and $B_q(Y)$ (resp.\ $B_p(X)$ and $\ell_q(Y)$) if for any function $f(z) = \sum_{n=0}^\infty x_n z^n$ in $B_p(X)$ we have that $g(z) = \sum_{n=0}^\infty T_n (x_n) z^n$ belongs to $B_q(Y)$ (resp.\ $\bigl( T_n (x_n) \bigr)_n \in \ell_q(Y)$). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces $X$ and $Y$. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in $B_p(X)$ are introduced.

Categories:42A45, 46E40

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/