Expand all Collapse all | Results 1 - 5 of 5 |
1. CJM 2013 (vol 66 pp. 721)
On Whitney-type Characterization of Approximate Differentiability on Metric Measure Spaces We study approximately differentiable functions on metric measure spaces admitting a Cheeger differentiable structure. The main result is a Whitney-type characterization of approximately differentiable functions in this setting.
As an application, we prove a Stepanov-type theorem and consider approximate differentiability of Sobolev, $BV$ and maximal functions.
Keywords:approximate differentiability, metric space, strong measurable differentiable structure, Whitney theorem Categories:26B05, 28A15, 28A75, 46E35 |
2. CJM 2013 (vol 66 pp. 641)
Heat Kernels and Green Functions on Metric Measure Spaces We prove that, in a setting of local Dirichlet forms on metric measure
spaces, a two-sided sub-Gaussian estimate of the heat kernel is equivalent
to the conjunction of the volume doubling propety, the elliptic Harnack
inequality and a certain estimate of the capacity between concentric balls.
The main technical tool is the equivalence between the capacity estimate and
the estimate of a mean exit time in a ball, that uses two-sided estimates of
a Green function in a ball.
Keywords:Dirichlet form, heat kernel, Green function, capacity Categories:35K08, 28A80, 31B05, 35J08, 46E35, 47D07 |
3. CJM 2007 (vol 59 pp. 1135)
Sobolev Extensions of HÃ¶lder Continuous and Characteristic Functions on Metric Spaces We study when characteristic and H\"older continuous functions
are traces of Sobolev functions on doubling metric measure spaces.
We provide analytic and geometric conditions sufficient for extending
characteristic and H\"older continuous functions into globally defined
Sobolev functions.
Keywords:characteristic function, Newtonian function, metric space, resolutivity, HÃ¶lder continuous, Perron solution, $p$-harmonic, Sobolev extension, Whitney covering Categories:46E35, 31C45 |
4. CJM 2006 (vol 58 pp. 492)
Extension Theorems on Weighted Sobolev Spaces and Some Applications We extend the extension theorems to weighted Sobolev spaces
$L^p_{w,k}(\mathcal D)$ on $(\varepsilon,\delta)$ domains with doubling weight $w$
that satisfies a Poincar\'e inequality and such that $w^{-1/p}$ is locally
$L^{p'}$. We also make use of the main theorem to improve weighted
Sobolev interpolation inequalities.
Keywords:PoincarÃ© inequalities, $A_p$ weights, doubling weights, $(\ep,\delta)$ domain, $(\ep,\infty)$ domain Category:46E35 |
5. CJM 2002 (vol 54 pp. 1280)
Besov Spaces and Hausdorff Dimension For Some Carnot-CarathÃ©odory Metric Spaces We regard a system of left invariant vector fields $\mathcal{X}=\{X_1,\dots,X_k\}$
satisfying the H\"ormander condition and the related Carnot-Carath\'eodory metric on a
unimodular Lie group $G$. We define Besov spaces corresponding to the sub-Laplacian
$\Delta=\sum X_i^2$ both with positive and negative smoothness. The atomic
decomposition of the spaces is given. In consequence we get the distributional
characterization of the Hausdorff dimension of Borel subsets with the Haar measure
zero.
Keywords:Besov spaces, sub-elliptic operators, Carnot-CarathÃ©odory metric, Hausdorff dimension Categories:46E35, 43A15, 28A78 |