CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46E15 ( Banach spaces of continuous, differentiable or analytic functions )

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2010 (vol 62 pp. 961)

Aleman, Alexandru; Duren, Peter; Martín, María J.; Vukotić, Dragan
Multiplicative Isometries and Isometric Zero-Divisors
For some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Isometric coefficient multipliers are also investigated.

Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlet-type spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zero-divisors
Categories:30H05, 46E15

2. CJM 2009 (vol 61 pp. 50)

Chen, Huaihui; Gauthier, Paul
Composition operators on $\mu$-Bloch spaces
Given a positive continuous function $\mu$ on the interval $0
Categories:47B33, 32A70, 46E15

3. CJM 2006 (vol 58 pp. 548)

Galanopoulos, P.; Papadimitrakis, M.
Hausdorff and Quasi-Hausdorff Matrices on Spaces of Analytic Functions
We consider Hausdorff and quasi-Hausdorff matrices as operators on classical spaces of analytic functions such as the Hardy and the Bergman spaces, the Dirichlet space, the Bloch spaces and $\BMOA$. When the generating sequence of the matrix is the moment sequence of a measure $\mu$, we find the conditions on $\mu$ which are equivalent to the boundedness of the matrix on the various spaces.

Categories:47B38, 46E15, 40G05, 42A20

4. CJM 1999 (vol 51 pp. 309)

Leung, Denny H.; Tang, Wee-Kee
Symmetric sequence subspaces of $C(\alpha)$, II
If $\alpha$ is an ordinal, then the space of all ordinals less than or equal to $\alpha$ is a compact Hausdorff space when endowed with the order topology. Let $C(\alpha)$ be the space of all continuous real-valued functions defined on the ordinal interval $[0, \alpha]$. We characterize the symmetric sequence spaces which embed into $C(\alpha)$ for some countable ordinal $\alpha$. A hierarchy $(E_\alpha)$ of symmetric sequence spaces is constructed so that, for each countable ordinal $\alpha$, $E_\alpha$ embeds into $C(\omega^{\omega^\alpha})$, but does not embed into $C(\omega^{\omega^\beta})$ for any $\beta < \alpha$.

Categories:03E13, 03E15, 46B03, 46B45, 46E15, 54G12

5. CJM 1997 (vol 49 pp. 100)

Lance, T. L.; Stessin, M. I.
Multiplication Invariant Subspaces of Hardy Spaces
This paper studies closed subspaces $L$ of the Hardy spaces $H^p$ which are $g$-invariant ({\it i.e.}, $g\cdot L \subseteq L)$ where $g$ is inner, $g\neq 1$. If $p=2$, the Wold decomposition theorem implies that there is a countable ``$g$-basis'' $f_1, f_2,\ldots$ of $L$ in the sense that $L$ is a direct sum of spaces $f_j\cdot H^2[g]$ where $H^2[g] = \{f\circ g \mid f\in H^2\}$. The basis elements $f_j$ satisfy the additional property that $\int_T |f_j|^2 g^k=0$, $k=1,2,\ldots\,.$ We call such functions $g$-$2$-inner. It also follows that any $f\in H^2$ can be factored $f=h_{f,2}\cdot (F_2\circ g)$ where $h_{f,2}$ is $g$-$2$-inner and $F$ is outer, generalizing the classical Riesz factorization. Using $L^p$ estimates for the canonical decomposition of $H^2$, we find a factorization $f=h_{f,p} \cdot (F_p \circ g)$ for $f\in H^p$. If $p\geq 1$ and $g$ is a finite Blaschke product we obtain, for any $g$-invariant $L\subseteq H^p$, a finite $g$-basis of $g$-$p$-inner functions.

Categories:30H05, 46E15, 47B38

© Canadian Mathematical Society, 2014 : https://cms.math.ca/