CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46B08 ( Ultraproduct techniques in Banach space theory [See also 46M07] )

  Expand all        Collapse all Results 1 - 1 of 1

1. CJM 2004 (vol 56 pp. 983)

Junge, Marius
Fubini's Theorem for Ultraproducts \\of Noncommutative $L_p$-Spaces
Let $(\M_i)_{i\in I}$, $(\N_j)_{j\in J}$ be families of von Neumann algebras and $\U$, $\U'$ be ultrafilters in $I$, $J$, respectively. Let $1\le p<\infty$ and $\nen$. Let $x_1$,\dots,$x_n$ in $\prod L_p(\M_i)$ and $y_1$,\dots,$y_n$ in $\prod L_p(\N_j)$ be bounded families. We show the following equality $$ \lim_{i,\U} \lim_{j,\U'} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} = \lim_{j,\U'} \lim_{i,\U} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} . $$ For $p=1$ this Fubini type result is related to the local reflexivity of duals of $C^*$-algebras. This fails for $p=\infty$.

Keywords:noncommutative $L_p$-spaces, ultraproducts
Categories:46L52, 46B08, 46L07

© Canadian Mathematical Society, 2014 : https://cms.math.ca/