Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46A45 ( Sequence spaces (including Kothe sequence spaces) [See also 46B45] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

De Bernardi, Carlo Alberto; Veselý, Libor
Tilings of normed spaces
By a tiling of a topological linear space $X$ we mean a covering of $X$ by at least two closed convex sets, called tiles, whose nonempty interiors are pairwise disjoint. Study of tilings of infinite-dimensional spaces initiated in the 1980's with pioneer papers by V. Klee. We prove some general properties of tilings of locally convex spaces, and then apply these results to study existence of tilings of normed and Banach spaces by tiles possessing certain smoothness or rotundity properties. For a Banach space $X$, our main results are the following. 1. $X$ admits no tiling by Fréchet smooth bounded tiles. 2. If $X$ is locally uniformly rotund (LUR), it does not admit any tiling by balls. 3. On the other hand, some $\ell_1(\Gamma)$ spaces, $\Gamma$ uncountable, do admit a tiling by pairwise disjoint LUR bounded tiles.

Keywords:tiling of normed space, Fréchet smooth body, locally uniformly rotund body, $\ell_1(\Gamma)$-space
Categories:46B20, 52A99, 46A45

2. CJM 1998 (vol 50 pp. 1138)

Chalov, P. A.; Terzioğlu, T.; Zahariuta, V. P.
Compound invariants and mixed $F$-, $\DF$-power spaces
The problems on isomorphic classification and quasiequivalence of bases are studied for the class of mixed $F$-, $\DF$-power series spaces, {\it i.e.} the spaces of the following kind $$ G(\la,a)=\lim_{p \to \infty} \proj \biggl(\lim_{q \to \infty}\ind \Bigl(\ell_1\bigl(a_i (p,q)\bigr)\Bigr)\biggr), $$ where $a_i (p,q)=\exp\bigl((p-\la_i q)a_i\bigr)$, $p,q \in \N$, and $\la =( \la_i)_{i \in \N}$, $a=(a_i)_{i \in \N}$ are some sequences of positive numbers. These spaces, up to isomorphisms, are basis subspaces of tensor products of power series spaces of $F$- and $\DF$-types, respectively. The $m$-rectangle characteristic $\mu_m^{\lambda,a}(\delta,\varepsilon; \tau,t)$, $m \in \N$ of the space $G(\la,a)$ is defined as the number of members of the sequence $(\la_i, a_i)_{i \in \N}$ which are contained in the union of $m$ rectangles $P_k = (\delta_k, \varepsilon_k] \times (\tau_k, t_k]$, $k = 1,2, \ldots, m$. It is shown that each $m$-rectangle characteristic is an invariant on the considered class under some proper definition of an equivalency relation. The main tool are new compound invariants, which combine some version of the classical approximative dimensions (Kolmogorov, Pe{\l}czynski) with appropriate geometrical and interpolational operations under neighborhoods of the origin (taken from a given basis).

Categories:46A04, 46A45, 46M05

© Canadian Mathematical Society, 2016 :