CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46A04 ( Locally convex Frechet spaces and (DF)-spaces )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2002 (vol 54 pp. 225)

Arslan, Bora; Goncharov, Alexander P.; Kocatepe, Mefharet
Spaces of Whitney Functions on Cantor-Type Sets
We introduce the concept of logarithmic dimension of a compact set. In terms of this magnitude, the extension property and the diametral dimension of spaces $\calE(K)$ can be described for Cantor-type compact sets.

Categories:46E10, 31A15, 46A04

2. CJM 1998 (vol 50 pp. 1138)

Chalov, P. A.; Terzioğlu, T.; Zahariuta, V. P.
Compound invariants and mixed $F$-, $\DF$-power spaces
The problems on isomorphic classification and quasiequivalence of bases are studied for the class of mixed $F$-, $\DF$-power series spaces, {\it i.e.} the spaces of the following kind $$ G(\la,a)=\lim_{p \to \infty} \proj \biggl(\lim_{q \to \infty}\ind \Bigl(\ell_1\bigl(a_i (p,q)\bigr)\Bigr)\biggr), $$ where $a_i (p,q)=\exp\bigl((p-\la_i q)a_i\bigr)$, $p,q \in \N$, and $\la =( \la_i)_{i \in \N}$, $a=(a_i)_{i \in \N}$ are some sequences of positive numbers. These spaces, up to isomorphisms, are basis subspaces of tensor products of power series spaces of $F$- and $\DF$-types, respectively. The $m$-rectangle characteristic $\mu_m^{\lambda,a}(\delta,\varepsilon; \tau,t)$, $m \in \N$ of the space $G(\la,a)$ is defined as the number of members of the sequence $(\la_i, a_i)_{i \in \N}$ which are contained in the union of $m$ rectangles $P_k = (\delta_k, \varepsilon_k] \times (\tau_k, t_k]$, $k = 1,2, \ldots, m$. It is shown that each $m$-rectangle characteristic is an invariant on the considered class under some proper definition of an equivalency relation. The main tool are new compound invariants, which combine some version of the classical approximative dimensions (Kolmogorov, Pe{\l}czynski) with appropriate geometrical and interpolational operations under neighborhoods of the origin (taken from a given basis).

Categories:46A04, 46A45, 46M05

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/