location:  Publications → journals
Search results

Search: MSC category 46 ( Functional analysis )

 Expand all        Collapse all Results 1 - 25 of 158

1. CJM Online first

Dantas, Sheldon; García, Domingo; Maestre, Manuel; Martín, Miguel
 The Bishop-Phelps-BollobÃ¡s property for compact operators We study the Bishop-Phelps-BollobÃ¡s property (BPBp for short) for compact operators. We present some abstract techniques which allows to carry the BPBp for compact operators from sequence spaces to function spaces. As main applications, we prove the following results. Let $X$, $Y$ be Banach spaces. If $(c_0,Y)$ has the BPBp for compact operators, then so do $(C_0(L),Y)$ for every locally compact Hausdorff topological space $L$ and $(X,Y)$ whenever $X^*$ is isometrically isomorphic to $\ell_1$. If $X^*$ has the Radon-NikodÃ½m property and $(\ell_1(X),Y)$ has the BPBp for compact operators, then so does $(L_1(\mu,X),Y)$ for every positive measure $\mu$; as a consequence, $(L_1(\mu,X),Y)$ has the the BPBp for compact operators when $X$ and $Y$ are finite-dimensional or $Y$ is a Hilbert space and $X=c_0$ or $X=L_p(\nu)$ for any positive measure $\nu$ and $1\lt p\lt \infty$. For $1\leq p \lt \infty$, if $(X,\ell_p(Y))$ has the BPBp for compact operators, then so does $(X,L_p(\mu,Y))$ for every positive measure $\mu$ such that $L_1(\mu)$ is infinite-dimensional. If $(X,Y)$ has the BPBp for compact operators, then so do $(X,L_\infty(\mu,Y))$ for every $\sigma$-finite positive measure $\mu$ and $(X,C(K,Y))$ for every compact Hausdorff topological space $K$. Keywords:Bishop-Phelps theorem, Bishop-Phelps-BollobÃ¡s property, norm attaining operator, compact operatorCategories:46B04, 46B20, 46B28, 46B25, 46E40

2. CJM Online first

 Almost disjointness preservers We study the stability of disjointness preservers on Banach lattices. In many cases, we prove that an "almost disjointness preserving" operator is well approximable by a disjointness preserving one. However, this approximation is not always possible, as our examples show. Keywords:Banach lattice, disjointness preservingCategories:47B38, 46B42

3. CJM Online first

Crann, Jason
 Amenability and covariant injectivity of locally compact quantum groups II Building on our previous work, we study the non-relative homology of quantum group convolution algebras. Our main result establishes the equivalence of amenability of a locally compact quantum group $\mathbb{G}$ and 1-injectivity of $L^{\infty}(\widehat{\mathbb{G}})$ as an operator $L^1(\widehat{\mathbb{G}})$-module. In particular, a locally compact group $G$ is amenable if and only if its group von Neumann algebra $VN(G)$ is 1-injective as an operator module over the Fourier algebra $A(G)$. As an application, we provide a decomposability result for completely bounded $L^1(\widehat{\mathbb{G}})$-module maps on $L^{\infty}(\widehat{\mathbb{G}})$, and give a simplified proof that amenable discrete quantum groups have co-amenable compact duals which avoids the use of modular theory and the Powers--StÃ¸rmer inequality, suggesting that our homological techniques may yield a new approach to the open problem of duality between amenability and co-amenability. Keywords:locally compact quantum group, amenability, injective moduleCategories:22D35, 46M10, 46L89

4. CJM Online first

Hartglass, Michael
 Free product C*-algebras associated to graphs, free differentials, and laws of loops We study a canonical C$^*$-algebra, $\mathcal{S}(\Gamma, \mu)$, that arises from a weighted graph $(\Gamma, \mu)$, specific cases of which were previously studied in the context of planar algebras. We discuss necessary and sufficient conditions of the weighting which ensure simplicity and uniqueness of trace of $\mathcal{S}(\Gamma, \mu)$, and study the structure of its positive cone. We then study the $*$-algebra, $\mathcal{A}$, generated by the generators of $\mathcal{S}(\Gamma, \mu)$, and use a free differential calculus and techniques of Charlesworth and Shlyakhtenko, as well as Mai, Speicher, and Weber to show that certain loop" elements have no atoms in their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that self adjoint elements $x \in M_{n}(\mathcal{A})$ have algebraic Cauchy transform, we explore some applications to eigenvalues of polynomials in Wishart matrices and to diagrammatic elements in von Neumann algebras initially considered by Guionnet, Jones, and Shlyakhtenko. Keywords:free probability, C*-algebraCategory:46L09

5. CJM 2016 (vol 68 pp. 999)

Izumi, Masaki; Morrison, Scott; Penneys, David
 Quotients of $A_2 * T_2$ We study unitary quotients of the free product unitary pivotal category $A_2*T_2$. We show that such quotients are parametrized by an integer $n\geq 1$ and an $2n$-th root of unity $\omega$. We show that for $n=1,2,3$, there is exactly one quotient and $\omega=1$. For $4\leq n\leq 10$, we show that there are no such quotients. Our methods also apply to quotients of $T_2*T_2$, where we have a similar result. The essence of our method is a consistency check on jellyfish relations. While we only treat the specific cases of $A_2 * T_2$ and $T_2 * T_2$, we anticipate that our technique can be extended to a general method for proving nonexistence of planar algebras with a specified principal graph. During the preparation of this manuscript, we learnt of Liu's independent result on composites of $A_3$ and $A_4$ subfactor planar algebras (arxiv:1308.5691). In 1994, Bisch-Haagerup showed that the principal graph of a composite of $A_3$ and $A_4$ must fit into a certain family, and Liu has classified all such subfactor planar algebras. We explain the connection between the quotient categories and the corresponding composite subfactor planar algebras. As a corollary of Liu's result, there are no such quotient categories for $n\geq 4$. This is an abridged version of arxiv:1308.5723. Keywords:pivotal category, free product, quotient, subfactor, intermediate subfactorCategory:46L37

6. CJM Online first

Kaftal, Victor; Ng, Ping Wong; Zhang, Shuang
 Strict comparison of positive elements in multiplier algebras Main result: If a C*-algebra $\mathcal{A}$ is simple, $\sigma$-unital, has finitely many extremal traces, and has strict comparison of positive elements by traces, then its multiplier algebra $\operatorname{\mathcal{M}}(\mathcal{A})$ also has strict comparison of positive elements by traces. The same results holds if finitely many extremal traces" is replaced by quasicontinuous scale". A key ingredient in the proof is that every positive element in the multiplier algebra of an arbitrary $\sigma$-unital C*-algebra can be approximated by a bi-diagonal series. An application of strict comparison: If $\mathcal{A}$ is a simple separable stable C*-algebra with real rank zero, stable rank one, and strict comparison of positive elements by traces, then whether a positive element is a positive linear combination of projections is determined by the trace values of its range projection. Keywords:strict comparison, bi-diagonal form, positive combinationsCategories:46L05, 46L35, 46L45, 47C15

7. CJM 2016 (vol 68 pp. 1023)

Phillips, John; Raeburn, Iain
 Centre-valued Index for Toeplitz Operators with Noncommuting Symbols We formulate and prove a winding number'' index theorem for certain Toeplitz'' operators in the same spirit as Gohberg-Krein, Lesch and others. The number'' is replaced by a self-adjoint operator in a subalgebra $Z\subseteq Z(A)$ of a unital $C^*$-algebra, $A$. We assume a faithful $Z$-valued trace $\tau$ on $A$ left invariant under an action $\alpha:{\mathbf R}\to Aut(A)$ leaving $Z$ pointwise fixed.If $\delta$ is the infinitesimal generator of $\alpha$ and $u$ is invertible in $\operatorname{dom}(\delta)$ then the winding operator'' of $u$ is $\frac{1}{2\pi i}\tau(\delta(u)u^{-1})\in Z_{sa}.$ By a careful choice of representations we extend $(A,Z,\tau,\alpha)$ to a von Neumann setting $(\mathfrak{A},\mathfrak{Z},\bar\tau,\bar\alpha)$ where $\mathfrak{A}=A^{\prime\prime}$ and $\mathfrak{Z}=Z^{\prime\prime}.$ Then $A\subset\mathfrak{A}\subset \mathfrak{A}\rtimes{\bf R}$, the von Neumann crossed product, and there is a faithful, dual $\mathfrak{Z}$-trace on $\mathfrak{A}\rtimes{\bf R}$. If $P$ is the projection in $\mathfrak{A}\rtimes{\bf R}$ corresponding to the non-negative spectrum of the generator of $\mathbf R$ inside $\mathfrak{A}\rtimes{\mathbf R}$ and $\tilde\pi:A\to\mathfrak{A}\rtimes{\mathbf R}$ is the embedding then we define for $u\in A^{-1}$, $T_u=P\tilde\pi(u) P$ and show it is Fredholm in an appropriate sense and the $\mathfrak{Z}$-valued index of $T_u$ is the negative of the winding operator. In outline the proof follows the proof of the scalar case done previously by the authors. The main difficulty is making sense of the constructions with the scalars replaced by $\mathfrak{Z}$ in the von Neumann setting. The construction of the dual $\mathfrak{Z}$-trace on $\mathfrak{A}\rtimes{\mathbf R}$ required the nontrivial development of a $\mathfrak{Z}$-Hilbert Algebra theory. We show that certain of these Fredholm operators fiber as a section'' of Fredholm operators with scalar-valued index and the centre-valued index fibers as a section of the scalar-valued indices. Keywords:index ,Toeplitz operatorCategories:46L55, 19K56, 46L80

8. CJM Online first

Hartz, Michael
 On the isomorphism problem for multiplier algebras of Nevanlinna-Pick spaces We continue the investigation of the isomorphism problem for multiplier algebras of reproducing kernel Hilbert spaces with the complete Nevanlinna-Pick property. In contrast to previous work in this area, we do not study these spaces by identifying them with restrictions of a universal space, namely the Drury-Arveson space. Instead, we work directly with the Hilbert spaces and their reproducing kernels. In particular, we show that two multiplier algebras of Nevanlinna-Pick spaces on the same set are equal if and only if the Hilbert spaces are equal. Most of the article is devoted to the study of a special class of complete Nevanlinna-Pick spaces on homogeneous varieties. We provide a complete answer to the question of when two multiplier algebras of spaces of this type are algebraically or isometrically isomorphic. This generalizes results of Davidson, Ramsey, Shalit, and the author. Keywords:non-selfadjoint operator algebras, reproducing kernel Hilbert spaces, multiplier algebra, Nevanlinna-Pick kernels, isomorphism problemCategories:47L30, 46E22, 47A13

9. CJM 2016 (vol 68 pp. 1067)

Runde, Volker; Viselter, Ami
 On Positive Definiteness over Locally Compact Quantum Groups The notion of positive-definite functions over locally compact quantum groups was recently introduced and studied by Daws and Salmi. Based on this work, we generalize various well-known results about positive-definite functions over groups to the quantum framework. Among these are theorems on "square roots" of positive-definite functions, comparison of various topologies, positive-definite measures and characterizations of amenability, and the separation property with respect to compact quantum subgroups. Keywords:bicrossed product, locally compact quantum group, non-commutative $L^p$-space, positive-definite function, positive-definite measure, separation propertyCategories:20G42, 22D25, 43A35, 46L51, 46L52, 46L89

10. CJM 2016 (vol 68 pp. 698)

 Quantum Families of Invertible Maps and Related Problems The notion of families of quantum invertible maps (C$^*$-algebra homomorphisms satisfying PodleÅ' condition) is employed to strengthen and reinterpret several results concerning universal quantum groups acting on finite quantum spaces. In particular Wang's quantum automorphism groups are shown to be universal with respect to quantum families of invertible maps. Further the construction of the Hopf image of Banica and Bichon is phrased in the purely analytic language and employed to define the quantum subgroup generated by a family of quantum subgroups or more generally a family of quantum invertible maps. Keywords:quantum families of invertible maps, Hopf image, universal quantum groupCategories:46L89, 46L65

11. CJM Online first

De Bernardi, Carlo Alberto; Veselý, Libor
 Tilings of normed spaces By a tiling of a topological linear space $X$ we mean a covering of $X$ by at least two closed convex sets, called tiles, whose nonempty interiors are pairwise disjoint. Study of tilings of infinite-dimensional spaces initiated in the 1980's with pioneer papers by V. Klee. We prove some general properties of tilings of locally convex spaces, and then apply these results to study existence of tilings of normed and Banach spaces by tiles possessing certain smoothness or rotundity properties. For a Banach space $X$, our main results are the following. 1. $X$ admits no tiling by FrÃ©chet smooth bounded tiles. 2. If $X$ is locally uniformly rotund (LUR), it does not admit any tiling by balls. 3. On the other hand, some $\ell_1(\Gamma)$ spaces, $\Gamma$ uncountable, do admit a tiling by pairwise disjoint LUR bounded tiles. Keywords:tiling of normed space, FrÃ©chet smooth body, locally uniformly rotund body, $\ell_1(\Gamma)$-spaceCategories:46B20, 52A99, 46A45

12. CJM 2016 (vol 68 pp. 876)

Ostrovskii, Mikhail; Randrianantoanina, Beata
 Metric Spaces Admitting Low-distortion Embeddings into All $n$-dimensional Banach Spaces For a fixed $K\gg 1$ and $n\in\mathbb{N}$, $n\gg 1$, we study metric spaces which admit embeddings with distortion $\le K$ into each $n$-dimensional Banach space. Classical examples include spaces embeddable into $\log n$-dimensional Euclidean spaces, and equilateral spaces. We prove that good embeddability properties are preserved under the operation of metric composition of metric spaces. In particular, we prove that $n$-point ultrametrics can be embedded with uniformly bounded distortions into arbitrary Banach spaces of dimension $\log n$. The main result of the paper is a new example of a family of finite metric spaces which are not metric compositions of classical examples and which do embed with uniformly bounded distortion into any Banach space of dimension $n$. This partially answers a question of G. Schechtman. Keywords:basis constant, bilipschitz embedding, diamond graph, distortion, equilateral set, ultrametricCategories:46B85, 05C12, 30L05, 46B15, 52A21

13. CJM 2016 (vol 68 pp. 309)

Daws, Matthew
 Categorical Aspects of Quantum Groups: Multipliers and Intrinsic Groups We show that the assignment of the (left) completely bounded multiplier algebra $M_{cb}^l(L^1(\mathbb G))$ to a locally compact quantum group $\mathbb G$, and the assignment of the intrinsic group, form functors between appropriate categories. Morphisms of locally compact quantum groups can be described by Hopf $*$-homomorphisms between universal $C^*$-algebras, by bicharacters, or by special sorts of coactions. We show that the whole theory of completely bounded multipliers can be lifted to the universal $C^*$-algebra level, and that then the different pictures of both multipliers (reduced, universal, and as centralisers) and morphisms interact in extremely natural ways. The intrinsic group of a quantum group can be realised as a class of multipliers, and so our techniques immediately apply. We also show how to think of the intrinsic group using the universal $C^*$-algebra picture, and then, again, show how the differing views on the intrinsic group interact naturally with morphisms. We show that the intrinsic group is the maximal classical'' quantum subgroup of a locally compact quantum group, show that it is even closed in the strong Vaes sense, and that the intrinsic group functor is an adjoint to the inclusion functor from locally compact groups to quantum groups. Keywords:locally compact quantum group, morphism, intrinsic group, multiplier, centraliserCategories:20G42, 22D25, 43A22, 43A35, 43A95, 46L52, 46L89, 47L25

14. CJM Online first

Klep, Igor; Špenko, Špela
 Free function theory through matrix invariants This paper concerns free function theory. Free maps are free analogs of analytic functions in several complex variables, and are defined in terms of freely noncommuting variables. A function of $g$ noncommuting variables is a function on $g$-tuples of square matrices of all sizes that respects direct sums and simultaneous conjugation. Examples of such maps include noncommutative polynomials, noncommutative rational functions and convergent noncommutative power series. In sharp contrast to the existing literature in free analysis, this article investigates free maps \emph{with involution} -- free analogs of real analytic functions. To get a grip on these, techniques and tools from invariant theory are developed and applied to free analysis. Here is a sample of the results obtained. A characterization of polynomial free maps via properties of their finite-dimensional slices is presented and then used to establish power series expansions for analytic free maps about scalar and non-scalar points; the latter are series of generalized polynomials for which an invariant-theoretic characterization is given. Furthermore, an inverse and implicit function theorem for free maps with involution is obtained. Finally, with a selection of carefully chosen examples it is shown that free maps with involution do not exhibit strong rigidity properties enjoyed by their involution-free counterparts. Keywords:free algebra, free analysis, invariant theory, polynomial identities, trace identities, concomitants, analytic maps, inverse function theorem, generalized polynomialsCategories:16R30, 32A05, 46L52, 15A24, 47A56, 15A24, 46G20

15. CJM 2015 (vol 67 pp. 1290)

Charlesworth, Ian; Nelson, Brent; Skoufranis, Paul
 On Two-faced Families of Non-commutative Random Variables We demonstrate that the notions of bi-free independence and combinatorial-bi-free independence of two-faced families are equivalent using a diagrammatic view of bi-non-crossing partitions. These diagrams produce an operator model on a Fock space suitable for representing any two-faced family of non-commutative random variables. Furthermore, using a Kreweras complement on bi-non-crossing partitions we establish the expected formulas for the multiplicative convolution of a bi-free pair of two-faced families. Keywords:free probability, operator algebras, bi-freeCategory:46L54

16. CJM 2015 (vol 67 pp. 990)

Amini, Massoud; Elliott, George A.; Golestani, Nasser
 The Category of Bratteli Diagrams A category structure for Bratteli diagrams is proposed and a functor from the category of AF algebras to the category of Bratteli diagrams is constructed. Since isomorphism of Bratteli diagrams in this category coincides with Bratteli's notion of equivalence, we obtain in particular a functorial formulation of Bratteli's classification of AF algebras (and at the same time, of Glimm's classification of UHF~algebras). It is shown that the three approaches to classification of AF~algebras, namely, through Bratteli diagrams, K-theory, and abstract classifying categories, are essentially the same from a categorical point of view. Keywords:C$^{*}$-algebra, category, functor, AF algebra, dimension group, Bratteli diagramCategories:46L05, 46L35, 46M15

17. CJM 2015 (vol 67 pp. 481)

an Huef, Astrid; Archbold, Robert John
 The C*-algebras of Compact Transformation Groups We investigate the representation theory of the crossed-product $C^*$-algebra associated to a compact group $G$ acting on a locally compact space $X$ when the stability subgroups vary discontinuously. Our main result applies when $G$ has a principal stability subgroup or $X$ is locally of finite $G$-orbit type. Then the upper multiplicity of the representation of the crossed product induced from an irreducible representation $V$ of a stability subgroup is obtained by restricting $V$ to a certain closed subgroup of the stability subgroup and taking the maximum of the multiplicities of the irreducible summands occurring in the restriction of $V$. As a corollary we obtain that when the trivial subgroup is a principal stability subgroup, the crossed product is a Fell algebra if and only if every stability subgroup is abelian. A second corollary is that the $C^*$-algebra of the motion group $\mathbb{R}^n\rtimes \operatorname{SO}(n)$ is a Fell algebra. This uses the classical branching theorem for the special orthogonal group $\operatorname{SO}(n)$ with respect to $\operatorname{SO}(n-1)$. Since proper transformation groups are locally induced from the actions of compact groups, we describe how some of our results can be extended to transformation groups that are locally proper. Keywords:compact transformation group, proper action, spectrum of a C*-algebra, multiplicity of a representation, crossed-product C*-algebra, continuous-trace C*-algebra, Fell algebraCategories:46L05, 46L55

18. CJM 2015 (vol 67 pp. 759)

Carey, Alan L; Gayral, Victor; Phillips, John; Rennie, Adam; Sukochev, Fedor
 Spectral Flow for Nonunital Spectral Triples We prove two results about nonunital index theory left open in a previous paper. The first is that the spectral triple arising from an action of the reals on a $C^*$-algebra with invariant trace satisfies the hypotheses of the nonunital local index formula. The second result concerns the meaning of spectral flow in the nonunital case. For the special case of paths arising from the odd index pairing for smooth spectral triples in the nonunital setting we are able to connect with earlier approaches to the analytic definition of spectral flow. Keywords:spectral triple, spectral flow, local index theoremCategory:46H30

19. CJM 2015 (vol 67 pp. 827)

Kaniuth, Eberhard
 The Bochner-Schoenberg-Eberlein Property and Spectral Synthesis for Certain Banach Algebra Products Associated with two commutative Banach algebras $A$ and $B$ and a character $\theta$ of $B$ is a certain Banach algebra product $A\times_\theta B$, which is a splitting extension of $B$ by $A$. We investigate two topics for the algebra $A\times_\theta B$ in relation to the corresponding ones of $A$ and $B$. The first one is the Bochner-Schoenberg-Eberlein property and the algebra of Bochner-Schoenberg-Eberlein functions on the spectrum, whereas the second one concerns the wide range of spectral synthesis problems for $A\times_\theta B$. Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSE-algebra, BSE-functionCategories:46J10, 46J25, 43A30, 43A45

20. CJM 2015 (vol 67 pp. 870)

Lin, Huaxin
 Minimal Dynamical Systems on Connected Odd Dimensional Spaces Let $\beta\colon S^{2n+1}\to S^{2n+1}$ be a minimal homeomorphism ($n\ge 1$). We show that the crossed product $C(S^{2n+1})\rtimes_\beta \mathbb{Z}$ has rational tracial rank at most one. Let $\Omega$ be a connected compact metric space with finite covering dimension and with $H^1(\Omega, \mathbb{Z})=\{0\}.$ Suppose that $K_i(C(\Omega))=\mathbb{Z}\oplus G_i,$ where $G_i$ is a finite abelian group, $i=0,1.$ Let $\beta\colon \Omega\to\Omega$ be a minimal homeomorphism. We also show that $A=C(\Omega)\rtimes_\beta\mathbb{Z}$ has rational tracial rank at most one and is classifiable. In particular, this applies to the minimal dynamical systems on odd dimensional real projective spaces. This is done by studying minimal homeomorphisms on $X\times \Omega,$ where $X$ is the Cantor set. Keywords:minimal dynamical systemsCategories:46L35, 46L05

21. CJM 2014 (vol 67 pp. 404)

Hua, Jiajie; Lin, Huaxin
 Rotation Algebras and the Exel Trace Formula We found that if $u$ and $v$ are any two unitaries in a unital $C^*$-algebra with $\|uv-vu\|\lt 2$ and $uvu^*v^*$ commutes with $u$ and $v,$ then the $C^*$-subalgebra $A_{u,v}$ generated by $u$ and $v$ is isomorphic to a quotient of some rotation algebra $A_\theta$ provided that $A_{u,v}$ has a unique tracial state. We also found that the Exel trace formula holds in any unital $C^*$-algebra. Let $\theta\in (-1/2, 1/2)$ be a real number. We prove the following: For any $\epsilon\gt 0,$ there exists $\delta\gt 0$ satisfying the following: if $u$ and $v$ are two unitaries in any unital simple $C^*$-algebra $A$ with tracial rank zero such that $\|uv-e^{2\pi i\theta}vu\|\lt \delta \text{ and } {1\over{2\pi i}}\tau(\log(uvu^*v^*))=\theta,$ for all tracial state $\tau$ of $A,$ then there exists a pair of unitaries $\tilde{u}$ and $\tilde{v}$ in $A$ such that $\tilde{u}\tilde{v}=e^{2\pi i\theta} \tilde{v}\tilde{u},\,\, \|u-\tilde{u}\|\lt \epsilon \text{ and } \|v-\tilde{v}\|\lt \epsilon.$ Keywords:rotation algebras, Exel trace formulaCategory:46L05

22. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
 $K$-theory of Furstenberg Transformation Group $C^*$-algebras The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of ErdÅs), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips. Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphismCategories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

23. CJM 2013 (vol 66 pp. 1143)

Plevnik, Lucijan; Šemrl, Peter
 Maps Preserving Complementarity of Closed Subspaces of a Hilbert Space Let $\mathcal{H}$ and $\mathcal{K}$ be infinite-dimensional separable Hilbert spaces and ${\rm Lat}\,\mathcal{H}$ the lattice of all closed subspaces oh $\mathcal{H}$. We describe the general form of pairs of bijective maps $\phi , \psi : {\rm Lat}\,\mathcal{H} \to {\rm Lat}\,\mathcal{K}$ having the property that for every pair $U,V \in {\rm Lat}\,\mathcal{H}$ we have $\mathcal{H} = U \oplus V \iff \mathcal{K} = \phi (U) \oplus \psi (V)$. Then we reformulate this theorem as a description of bijective image equality and kernel equality preserving maps acting on bounded linear idempotent operators. Several known structural results for maps on idempotents are easy consequences. Keywords:Hilbert space, lattice of closed subspaces, complemented subspaces, adjacent subspaces, idempotentsCategories:46B20, 47B49

24. CJM 2013 (vol 65 pp. 1005)

Forrest, Brian; Miao, Tianxuan
 Uniformly Continuous Functionals and M-Weakly Amenable Groups Let $G$ be a locally compact group. Let $A_{M}(G)$ ($A_{0}(G)$)denote the closure of $A(G)$, the Fourier algebra of $G$ in the space of bounded (completely bounded) multipliers of $A(G)$. We call a locally compact group M-weakly amenable if $A_M(G)$ has a bounded approximate identity. We will show that when $G$ is M-weakly amenable, the algebras $A_{M}(G)$ and $A_{0}(G)$ have properties that are characteristic of the Fourier algebra of an amenable group. Along the way we show that the sets of tolopolically invariant means associated with these algebras have the same cardinality as those of the Fourier algebra. Keywords:Fourier algebra, multipliers, weakly amenable, uniformly continuous functionalsCategories:43A07, 43A22, 46J10, 47L25

25. CJM 2013 (vol 66 pp. 596)

Eilers, Søren; Restorff, Gunnar; Ruiz, Efren
 The Ordered $K$-theory of a Full Extension Let $\mathfrak{A}$ be a $C^{*}$-algebra with real rank zero which has the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the corona factorization property. We prove that $0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0$ is a full extension if and only if the extension is stenotic and $K$-lexicographic. {As an immediate application, we extend the classification result for graph $C^*$-algebras obtained by Tomforde and the first named author to the general non-unital case. In combination with recent results by Katsura, Tomforde, West and the first author, our result may also be used to give a purely $K$-theoretical description of when an essential extension of two simple and stable graph $C^*$-algebras is again a graph $C^*$-algebra.} Keywords:classification, extensions, graph algebrasCategories:46L80, 46L35, 46L05
 Page 1 2 3 4 ... 7 Next
 top of page | contact us | privacy | site map |