CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 44A12 ( Radon transform [See also 92C55] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

Alfonseca, M. Angeles; Kim, Jaegil
On the Local Convexity of Intersection Bodies of Revolution
One of the fundamental results in Convex Geometry is Busemann's theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is only natural to ask if there is a quantitative version of Busemann's theorem, i.e., if the intersection body operation actually improves convexity. In this paper we concentrate on the symmetric bodies of revolution to provide several results on the (strict) improvement of convexity under the intersection body operation. It is shown that the intersection body of a symmetric convex body of revolution has the same asymptotic behavior near the equator as the Euclidean ball. We apply this result to show that in sufficiently high dimension the double intersection body of a symmetric convex body of revolution is very close to an ellipsoid in the Banach-Mazur distance. We also prove results on the local convexity at the equator of intersection bodies in the class of star bodies of revolution.

Keywords:convex bodies, intersection bodies of star bodies, Busemann's theorem, local convexity
Categories:52A20, 52A38, 44A12

2. CJM 2012 (vol 66 pp. 700)

He, Jianxun; Xiao, Jinsen
Inversion of the Radon Transform on the Free Nilpotent Lie Group of Step Two
Let $F_{2n,2}$ be the free nilpotent Lie group of step two on $2n$ generators, and let $\mathbf P$ denote the affine automorphism group of $F_{2n,2}$. In this article the theory of continuous wavelet transform on $F_{2n,2}$ associated with $\mathbf P$ is developed, and then a type of radial wavelets is constructed. Secondly, the Radon transform on $F_{2n,2}$ is studied and two equivalent characterizations of the range for Radon transform are given. Several kinds of inversion Radon transform formulae are established. One is obtained from the Euclidean Fourier transform, the others are from group Fourier transform. By using wavelet transform we deduce an inversion formula of the Radon transform, which does not require the smoothness of functions if the wavelet satisfies the differentiability property. Specially, if $n=1$, $F_{2,2}$ is the $3$-dimensional Heisenberg group $H^1$, the inversion formula of the Radon transform is valid which is associated with the sub-Laplacian on $F_{2,2}$. This result cannot be extended to the case $n\geq 2$.

Keywords:Radon transform, wavelet transform, free nilpotent Lie group, unitary representation, inversion formula, sub-Laplacian
Categories:43A85, 44A12, 52A38

© Canadian Mathematical Society, 2014 : https://cms.math.ca/