Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 43A95 ( Categorical methods [See also 46Mxx] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2016 (vol 68 pp. 309)

Daws, Matthew
Categorical Aspects of Quantum Groups: Multipliers and Intrinsic Groups
We show that the assignment of the (left) completely bounded multiplier algebra $M_{cb}^l(L^1(\mathbb G))$ to a locally compact quantum group $\mathbb G$, and the assignment of the intrinsic group, form functors between appropriate categories. Morphisms of locally compact quantum groups can be described by Hopf $*$-homomorphisms between universal $C^*$-algebras, by bicharacters, or by special sorts of coactions. We show that the whole theory of completely bounded multipliers can be lifted to the universal $C^*$-algebra level, and that then the different pictures of both multipliers (reduced, universal, and as centralisers) and morphisms interact in extremely natural ways. The intrinsic group of a quantum group can be realised as a class of multipliers, and so our techniques immediately apply. We also show how to think of the intrinsic group using the universal $C^*$-algebra picture, and then, again, show how the differing views on the intrinsic group interact naturally with morphisms. We show that the intrinsic group is the ``maximal classical'' quantum subgroup of a locally compact quantum group, show that it is even closed in the strong Vaes sense, and that the intrinsic group functor is an adjoint to the inclusion functor from locally compact groups to quantum groups.

Keywords:locally compact quantum group, morphism, intrinsic group, multiplier, centraliser
Categories:20G42, 22D25, 43A22, 43A35, 43A95, 46L52, 46L89, 47L25

2. CJM 2002 (vol 54 pp. 1100)

Wood, Peter J.
The Operator Biprojectivity of the Fourier Algebra
In this paper, we investigate projectivity in the category of operator spaces. In particular, we show that the Fourier algebra of a locally compact group $G$ is operator biprojective if and only if $G$ is discrete.

Keywords:locally compact group, Fourier algebra, operator space, projective
Categories:13D03, 18G25, 43A95, 46L07, 22D99

© Canadian Mathematical Society, 2016 :