Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 43A30 ( Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc. )

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM Online first

Lee, Hun Hee; Youn, Sang-gyun
New deformations of convolution algebras and Fourier algebras on locally compact groups
In this paper we introduce a new way of deforming convolution algebras and Fourier algebras on locally compact groups. We demonstrate that this new deformation allows us to reveal some information of the underlying groups by examining Banach algebra properties of deformed algebras. More precisely, we focus on representability as an operator algebra of deformed convolution algebras on compact connected Lie groups with connection to the real dimension of the underlying group. Similarly, we investigate complete representability as an operator algebra of deformed Fourier algebras on some finitely generated discrete groups with connection to the growth rate of the group.

Keywords:Fourier algebra, convolution algebra, operator algebra, Beurling algebra
Categories:43A20, 43A30, 47L30, 47L25

2. CJM 2015 (vol 67 pp. 827)

Kaniuth, Eberhard
The Bochner-Schoenberg-Eberlein Property and Spectral Synthesis for Certain Banach Algebra Products
Associated with two commutative Banach algebras $A$ and $B$ and a character $\theta$ of $B$ is a certain Banach algebra product $A\times_\theta B$, which is a splitting extension of $B$ by $A$. We investigate two topics for the algebra $A\times_\theta B$ in relation to the corresponding ones of $A$ and $B$. The first one is the Bochner-Schoenberg-Eberlein property and the algebra of Bochner-Schoenberg-Eberlein functions on the spectrum, whereas the second one concerns the wide range of spectral synthesis problems for $A\times_\theta B$.

Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSE-algebra, BSE-function
Categories:46J10, 46J25, 43A30, 43A45

3. CJM 2012 (vol 65 pp. 1043)

Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin
Convolution of Trace Class Operators over Locally Compact Quantum Groups
We study locally compact quantum groups $\mathbb{G}$ through the convolution algebras $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})), \triangleright)$. We prove that the reduced quantum group $C^*$-algebra $C_0(\mathbb{G})$ can be recovered from the convolution $\triangleright$ by showing that the right $T(L_2(\mathbb{G}))$-module $\langle K(L_2(\mathbb{G}) \triangleright T(L_2(\mathbb{G}))\rangle$ is equal to $C_0(\mathbb{G})$. On the other hand, we show that the left $T(L_2(\mathbb{G}))$-module $\langle T(L_2(\mathbb{G}))\triangleright K(L_2(\mathbb{G})\rangle$ is isomorphic to the reduced crossed product $C_0(\widehat{\mathbb{G}}) \,_r\!\ltimes C_0(\mathbb{G})$, and hence is a much larger $C^*$-subalgebra of $B(L_2(\mathbb{G}))$. We establish a natural isomorphism between the completely bounded right multiplier algebras of $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})), \triangleright)$, and settle two invariance problems associated with the representation theorem of Junge-Neufang-Ruan (2009). We characterize regularity and discreteness of the quantum group $\mathbb{G}$ in terms of continuity properties of the convolution $\triangleright$ on $T(L_2(\mathbb{G}))$. We prove that if $\mathbb{G}$ is semi-regular, then the space $\langle T(L_2(\mathbb{G}))\triangleright B(L_2(\mathbb{G}))\rangle$ of right $\mathbb{G}$-continuous operators on $L_2(\mathbb{G})$, which was introduced by Bekka (1990) for $L_{\infty}(G)$, is a unital $C^*$-subalgebra of $B(L_2(\mathbb{G}))$. In the representation framework formulated by Neufang-Ruan-Spronk (2008) and Junge-Neufang-Ruan, we show that the dual properties of compactness and discreteness can be characterized simultaneously via automatic normality of quantum group bimodule maps on $B(L_2(\mathbb{G}))$. We also characterize some commutation relations of completely bounded multipliers of $(T(L_2(\mathbb{G})), \triangleright)$ over $B(L_2(\mathbb{G}))$.

Keywords:locally compact quantum groups and associated Banach algebras
Categories:22D15, 43A30, 46H05

4. CJM 2011 (vol 63 pp. 798)

Daws, Matthew
Representing Multipliers of the Fourier Algebra on Non-Commutative $L^p$ Spaces
We show that the multiplier algebra of the Fourier algebra on a locally compact group $G$ can be isometrically represented on a direct sum on non-commutative $L^p$ spaces associated with the right von Neumann algebra of $G$. The resulting image is the idealiser of the image of the Fourier algebra. If these spaces are given their canonical operator space structure, then we get a completely isometric representation of the completely bounded multiplier algebra. We make a careful study of the non-commutative $L^p$ spaces we construct and show that they are completely isometric to those considered recently by Forrest, Lee, and Samei. We improve a result of theirs about module homomorphisms. We suggest a definition of a Figa-Talamanca-Herz algebra built out of these non-commutative $L^p$ spaces, say $A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to $L^1(G)$, generalising the abelian situation.

Keywords:multiplier, Fourier algebra, non-commutative $L^p$ space, complex interpolation
Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52

5. CJM 2010 (vol 62 pp. 845)

Samei, Ebrahim; Spronk, Nico; Stokke, Ross
Biflatness and Pseudo-Amenability of Segal Algebras
We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, $L^1(G)$, and the Fourier algebra, $A(G)$, of a locally compact group~$G$.

Keywords:Segal algebra, pseudo-amenable Banach algebra, biflat Banach algebra
Categories:43A20, 43A30, 46H25, 46H10, 46H20, 46L07

6. CJM 2007 (vol 59 pp. 966)

Forrest, Brian E.; Runde, Volker; Spronk, Nico
Operator Amenability of the Fourier Algebra in the $\cb$-Multiplier Norm
Let $G$ be a locally compact group, and let $A_{\cb}(G)$ denote the closure of $A(G)$, the Fourier algebra of $G$, in the space of completely bounded multipliers of $A(G)$. If $G$ is a weakly amenable, discrete group such that $\cstar(G)$ is residually finite-dimensional, we show that $A_{\cb}(G)$ is operator amenable. In particular, $A_{\cb}(\free_2)$ is operator amenable even though $\free_2$, the free group in two generators, is not an amenable group. Moreover, we show that if $G$ is a discrete group such that $A_{\cb}(G)$ is operator amenable, a closed ideal of $A(G)$ is weakly completely complemented in $A(G)$ if and only if it has an approximate identity bounded in the $\cb$-multiplier norm.

Keywords:$\cb$-multiplier norm, Fourier algebra, operator amenability, weak amenability
Categories:43A22, 43A30, 46H25, 46J10, 46J40, 46L07, 47L25

7. CJM 2006 (vol 58 pp. 768)

Hu, Zhiguo; Neufang, Matthias
Decomposability of von Neumann Algebras and the Mazur Property of Higher Level
The decomposability number of a von Neumann algebra $\m$ (denoted by $\dec(\m)$) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in $\m$. In this paper, we explore the close connection between $\dec(\m)$ and the cardinal level of the Mazur property for the predual $\m_*$ of $\m$, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group $G$ as the group algebra $\lone$, the Fourier algebra $A(G)$, the measure algebra $M(G)$, the algebra $\luc^*$, etc. We show that for any of these von Neumann algebras, say $\m$, the cardinal number $\dec(\m)$ and a certain cardinal level of the Mazur property of $\m_*$ are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of $G$: the compact covering number $\kg$ of $G$ and the least cardinality $\bg$ of an open basis at the identity of $G$. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra $\ag^{**}$.

Keywords:Mazur property, predual of a von Neumann algebra, locally compact group and its cardinal invariants, group algebra, Fourier algebra, topological centre
Categories:22D05, 43A20, 43A30, 03E55, 46L10

8. CJM 1997 (vol 49 pp. 1117)

Hu, Zhiguo
The von Neumann algebra $\VN(G)$ of a locally compact group and quotients of its subspaces
Let $\VN(G)$ be the von Neumann algebra of a locally compact group $G$. We denote by $\mu$ the initial ordinal with $\abs{\mu}$ equal to the smallest cardinality of an open basis at the unit of $G$ and $X= \{\alpha; \alpha < \mu \}$. We show that if $G$ is nondiscrete then there exist an isometric $*$-isomorphism $\kappa$ of $l^{\infty}(X)$ into $\VN(G)$ and a positive linear mapping $\pi$ of $\VN(G)$ onto $l^{\infty}(X)$ such that $\pi\circ\kappa = \id_{l^{\infty}(X)}$ and $\kappa$ and $\pi$ have certain additional properties. Let $\UCB (\hat{G})$ be the $C^{*}$-algebra generated by operators in $\VN(G)$ with compact support and $F(\hat{G})$ the space of all $T \in \VN(G)$ such that all topologically invariant means on $\VN(G)$ attain the same value at $T$. The construction of the mapping $\pi$ leads to the conclusion that the quotient space $\UCB (\hat{G})/F(\hat{G})\cap \UCB(\hat{G})$ has $l^{\infty}(X)$ as a continuous linear image if $G$ is nondiscrete. When $G$ is further assumed to be non-metrizable, it is shown that $\UCB(\hat{G})/F (\hat{G})\cap \UCB(\hat{G})$ contains a linear isomorphic copy of $l^{\infty}(X)$. Similar results are also obtained for other quotient spaces.

Categories:22D25, 43A22, 43A30, 22D15, 43A07, 47D35

© Canadian Mathematical Society, 2016 :