Expand all Collapse all | Results 1 - 25 of 43 |
1. CJM 2013 (vol 65 pp. 1005)
Uniformly Continuous Functionals and M-Weakly Amenable Groups Let $G$ be a locally compact group. Let $A_{M}(G)$ ($A_{0}(G)$)denote
the closure of $A(G)$, the Fourier algebra of $G$ in the space of
bounded (completely bounded) multipliers of $A(G)$.
We call a locally compact group M-weakly amenable if
$A_M(G)$
has a
bounded approximate identity. We will show that when $G$ is M-weakly
amenable, the algebras $A_{M}(G)$ and $A_{0}(G)$ have
properties that are characteristic of the Fourier algebra of an
amenable group. Along the way we show that the sets of tolopolically
invariant means associated with these algebras have the same
cardinality as those of the Fourier algebra.
Keywords:Fourier algebra, multipliers, weakly amenable, uniformly continuous functionals Categories:43A07, 43A22, 46J10, 47L25 |
2. CJM 2012 (vol 66 pp. 700)
Inversion of the Radon Transform on the Free Nilpotent Lie Group of Step Two Let $F_{2n,2}$ be the free nilpotent Lie group of step two on $2n$
generators, and let $\mathbf P$ denote the affine automorphism group
of $F_{2n,2}$. In this article the theory of continuous wavelet
transform on $F_{2n,2}$ associated with $\mathbf P$ is developed,
and then a type of radial wavelets is constructed. Secondly, the
Radon transform on $F_{2n,2}$ is studied and two equivalent
characterizations of the range for Radon transform are given.
Several kinds of inversion Radon transform formulae
are established. One is obtained from the Euclidean Fourier transform, the others are from group Fourier transform. By using wavelet transform we deduce an inversion formula of the Radon
transform, which
does not require the smoothness of
functions if the wavelet satisfies the differentiability property.
Specially, if $n=1$, $F_{2,2}$ is the $3$-dimensional Heisenberg group $H^1$, the
inversion formula of the Radon transform is valid which is
associated with the sub-Laplacian on $F_{2,2}$. This result cannot
be extended to the case $n\geq 2$.
Keywords:Radon transform, wavelet transform, free nilpotent Lie group, unitary representation, inversion formula, sub-Laplacian Categories:43A85, 44A12, 52A38 |
3. CJM 2012 (vol 66 pp. 102)
Continuity of convolution of test functions on Lie groups For a Lie group $G$, we show that the map
$C^\infty_c(G)\times C^\infty_c(G)\to C^\infty_c(G)$,
$(\gamma,\eta)\mapsto \gamma*\eta$
taking a pair of
test functions to their convolution is continuous if and only if $G$ is $\sigma$-compact.
More generally, consider $r,s,t
\in \mathbb{N}_0\cup\{\infty\}$ with $t\leq r+s$, locally convex spaces $E_1$, $E_2$
and a continuous bilinear map $b\colon E_1\times E_2\to F$
to a complete locally convex space $F$.
Let $\beta\colon C^r_c(G,E_1)\times C^s_c(G,E_2)\to C^t_c(G,F)$,
$(\gamma,\eta)\mapsto \gamma *_b\eta$ be the associated convolution map.
The main result is a characterization of those $(G,r,s,t,b)$
for which $\beta$ is continuous.
Convolution
of compactly supported continuous functions on a locally compact group
is also discussed, as well as convolution of compactly supported $L^1$-functions
and convolution of compactly supported Radon measures.
Keywords:Lie group, locally compact group, smooth function, compact support, test function, second countability, countable basis, sigma-compactness, convolution, continuity, seminorm, product estimates Categories:22E30, 46F05, 22D15, 42A85, 43A10, 43A15, 46A03, 46A13, 46E25 |
4. CJM 2012 (vol 65 pp. 1043)
Convolution of Trace Class Operators over Locally Compact Quantum Groups We study locally compact quantum groups $\mathbb{G}$ through the
convolution algebras $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})),
\triangleright)$. We prove that the reduced quantum group
$C^*$-algebra $C_0(\mathbb{G})$ can be recovered from the convolution
$\triangleright$ by showing that the right $T(L_2(\mathbb{G}))$-module
$\langle K(L_2(\mathbb{G}) \triangleright T(L_2(\mathbb{G}))\rangle$ is
equal to $C_0(\mathbb{G})$. On the other hand, we show that the left
$T(L_2(\mathbb{G}))$-module $\langle T(L_2(\mathbb{G}))\triangleright
K(L_2(\mathbb{G})\rangle$ is isomorphic to the reduced crossed product
$C_0(\widehat{\mathbb{G}}) \,_r\!\ltimes C_0(\mathbb{G})$, and hence is
a much larger $C^*$-subalgebra of $B(L_2(\mathbb{G}))$.
We establish a natural isomorphism between the completely bounded
right multiplier algebras of $L_1(\mathbb{G})$ and
$(T(L_2(\mathbb{G})), \triangleright)$, and settle two invariance
problems associated with the representation theorem of
Junge-Neufang-Ruan (2009). We characterize regularity and discreteness
of the quantum group $\mathbb{G}$ in terms of continuity properties of
the convolution $\triangleright$ on $T(L_2(\mathbb{G}))$. We prove
that if $\mathbb{G}$ is semi-regular, then the space
$\langle T(L_2(\mathbb{G}))\triangleright B(L_2(\mathbb{G}))\rangle$ of right
$\mathbb{G}$-continuous operators on $L_2(\mathbb{G})$, which was
introduced by Bekka (1990) for $L_{\infty}(G)$, is a unital $C^*$-subalgebra
of $B(L_2(\mathbb{G}))$. In the representation framework formulated by
Neufang-Ruan-Spronk (2008) and Junge-Neufang-Ruan, we show that the
dual properties of compactness and discreteness can be characterized
simultaneously via automatic normality of quantum group bimodule maps
on $B(L_2(\mathbb{G}))$. We also characterize some commutation
relations of completely bounded multipliers of $(T(L_2(\mathbb{G})),
\triangleright)$ over $B(L_2(\mathbb{G}))$.
Keywords:locally compact quantum groups and associated Banach algebras Categories:22D15, 43A30, 46H05 |
5. CJM 2011 (vol 63 pp. 1161)
Transfer of Fourier Multipliers into Schur Multipliers and Sumsets in a Discrete Group We inspect the relationship between relative Fourier
multipliers on noncommutative Lebesgue-Orlicz spaces of a discrete
group $\varGamma$ and relative Toeplitz-Schur multipliers on
Schatten-von-Neumann-Orlicz classes. Four applications are given:
lacunary sets, unconditional Schauder bases for the subspace of a
Lebesgue space determined by a given spectrum $\varLambda\subseteq\varGamma$, the
norm of the Hilbert transform and the Riesz projection on
Schatten-von-Neumann classes with exponent a power of 2, and the norm of
Toeplitz Schur multipliers on Schatten-von-Neumann classes with
exponent less than 1.
Keywords:Fourier multiplier, Toeplitz Schur multiplier, lacunary set, unconditional approximation property, Hilbert transform, Riesz projection Categories:47B49, 43A22, 43A46, 46B28 |
6. CJM 2011 (vol 63 pp. 798)
Representing Multipliers of the Fourier Algebra on Non-Commutative $L^p$ Spaces We show that the multiplier algebra of the Fourier algebra on a
locally compact group $G$ can be isometrically represented on a direct
sum on non-commutative $L^p$ spaces associated with the right von
Neumann algebra of $G$. The resulting image is the idealiser of the
image of the Fourier algebra. If these spaces are given their
canonical operator space structure, then we get a completely isometric
representation of the completely bounded multiplier algebra. We make
a careful study of the non-commutative $L^p$ spaces we construct and
show that they are completely isometric to those considered recently
by Forrest, Lee, and Samei. We improve a result of theirs about module
homomorphisms. We suggest a definition of a Figa-Talamanca-Herz
algebra built out of these non-commutative $L^p$ spaces, say
$A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to
$L^1(G)$, generalising the abelian situation.
Keywords:multiplier, Fourier algebra, non-commutative $L^p$ space, complex interpolation Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52 |
7. CJM 2011 (vol 63 pp. 648)
Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps |
Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps We set up a framework for computing the spectral dimension of a class of one-dimensional
self-similar measures that are defined by iterated function systems
with overlaps and satisfy a family of second-order self-similar
identities. As applications of our result we obtain the spectral dimension
of important measures such as the infinite Bernoulli convolution
associated with the golden ratio and convolutions of Cantor-type measures.
The main novelty of our result is that the iterated function systems
we consider are not post-critically finite and do not satisfy the
well-known open set condition.
Keywords:spectral dimension, fractal, Laplacian, self-similar measure, iterated function system with overlaps, second-order self-similar identities Categories:28A80, , , , 35P20, 35J05, 43A05, 47A75 |
8. CJM 2011 (vol 63 pp. 689)
Higher Rank Wavelets A theory of higher rank multiresolution analysis is given in the
setting of abelian multiscalings. This theory enables the
construction, from a higher rank MRA, of finite wavelet sets
whose multidilations have translates forming an orthonormal basis
in $L^2(\mathbb R^d)$. While tensor products of uniscaled MRAs provide
simple examples we construct many nonseparable higher rank
wavelets. In particular we construct \emph{Latin square
wavelets} as rank~$2$ variants of Haar wavelets. Also we construct
nonseparable scaling functions for rank $2$ variants of Meyer
wavelet scaling functions, and we construct the associated
nonseparable wavelets with compactly supported Fourier transforms.
On the other hand we show that compactly supported scaling
functions for biscaled MRAs are necessarily separable.
Keywords: wavelet, multi-scaling, higher rank, multiresolution, Latin squares Categories:42C40, 42A65, 42A16, 43A65 |
9. CJM 2010 (vol 63 pp. 123)
Strong and Extremely Strong Ditkin sets for the Banach Algebras $A_p^r(G)=A_p\cap L^r(G)$
Let $A_p(G)$ be the Figa-Talamanca,
Herz Banach Algebra on $G$; thus $A_2(G)$
is the Fourier algebra. Strong Ditkin (SD) and
Extremely Strong Ditkin (ESD) sets for the Banach algebras
$A_p^r(G)$ are investigated for abelian and nonabelian
locally compact groups $G$. It is shown that SD and ESD sets
for $A_p(G)$ remain SD and ESD sets for $A_p^r(G)$,
with strict inclusion for ESD sets. The case for the strict
inclusion of SD sets is left open.
A result on the weak sequential completeness of $A_2(F)$
for ESD sets $F$ is proved and used to show that Varopoulos,
Helson, and Sidon sets are not ESD sets for $A_2(G)$, yet they
are such for $A_2^r(G)$ for discrete groups $G$, for
any $1\le r\le 2$.
A result is given on the equivalence of the sequential and the net
definitions of SD or ESD sets for $\sigma$-compact groups.
The above results are new even if $G$ is abelian.
Keywords:Fourier algebra, Figa-Talamanca-Herz algebra, locally compact group, Ditkin sets, Helson sets, Sidon sets, weak sequential completeness Categories:43A15, 43A10, 46J10, 43A45 |
10. CJM 2010 (vol 62 pp. 1419)
BMO-Estimates for Maximal Operators via Approximations of the Identity with Non-Doubling Measures
Let $\mu$ be a nonnegative Radon measure
on $\mathbb{R}^d$ that satisfies the growth condition that there exist
constants $C_0>0$ and $n\in(0,d]$ such that for all $x\in\mathbb{R}^d$ and
$r>0$, ${\mu(B(x,\,r))\le C_0r^n}$, where $B(x,r)$ is the open ball
centered at $x$ and having radius $r$. In this paper, the authors prove
that if $f$ belongs to the $\textrm {BMO}$-type space $\textrm{RBMO}(\mu)$ of Tolsa, then
the homogeneous maximal function $\dot{\mathcal{M}}_S(f)$ (when $\mathbb{R}^d$ is not an
initial cube) and the inhomogeneous maximal function
$\mathcal{M}_S(f)$ (when $\mathbb{R}^d$ is an initial cube)
associated with a given approximation of the identity $S$ of Tolsa are
either infinite everywhere or finite almost everywhere,
and in the latter case, $\dot{\mathcal{M}}_S$ and $\mathcal{M}_S$ are bounded from
$\textrm{RBMO}(\mu)$ to the $\textrm {BLO}$-type
space $\textrm{RBLO}(\mu)$. The authors also prove that the inhomogeneous
maximal operator $\mathcal{M}_S$ is bounded from the local
$\textrm {BMO}$-type space $\textrm{rbmo}(\mu)$
to the local $\textrm {BLO}$-type space $\textrm{rblo}(\mu)$.
Keywords:Non-doubling measure, maximal operator, approximation of the identity, RBMO(mu), RBLO(mu), rbmo(mu), rblo(mu) Categories:42B25, 42B30, 47A30, 43A99 |
11. CJM 2010 (vol 62 pp. 845)
Biflatness and Pseudo-Amenability of Segal Algebras We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, $L^1(G)$, and the Fourier algebra, $A(G)$, of a locally compact group~$G$.
Keywords:Segal algebra, pseudo-amenable Banach algebra, biflat Banach algebra Categories:43A20, 43A30, 46H25, 46H10, 46H20, 46L07 |
12. CJM 2009 (vol 61 pp. 382)
Unit Elements in the Double Dual of a Subalgebra of the Fourier Algebra $A(G)$ Let $\mathcal{A}$ be a Banach algebra with a bounded right
approximate identity and let $\mathcal B$ be a closed ideal of
$\mathcal A$. We study the relationship between the right identities
of the double duals ${\mathcal B}^{**}$ and ${\mathcal A}^{**}$ under
the Arens product. We show that every right identity of ${\mathcal
B}^{**}$ can be extended to a right identity of ${\mathcal A}^{**}$ in
some sense. As a consequence, we answer a question of Lau and
\"Ulger, showing that for the Fourier algebra $A(G)$ of a locally
compact group $G$, an element $\phi \in A(G)^{**}$ is in $A(G)$ if and
only if $A(G) \phi \subseteq A(G)$ and $E \phi = \phi $ for all right
identities $E $ of $A(G)^{**}$. We also prove some results about the
topological centers of ${\mathcal B}^{**}$ and ${\mathcal A}^{**}$.
Keywords:Locally compact groups, amenable groups, Fourier algebra, identity, Arens product, topological center Category:43A07 |
13. CJM 2008 (vol 60 pp. 1010)
$H^\infty$ Functional Calculus and Mikhlin-Type Multiplier Conditions Let $T$ be a sectorial operator. It is known that the existence of a
bounded (suitably scaled) $H^\infty$ calculus for $T$, on every
sector containing the positive half-line, is equivalent to the
existence of a bounded functional calculus on the Besov algebra
$\Lambda_{\infty,1}^\alpha(\R^+)$. Such an algebra
includes functions defined by Mikhlin-type conditions and so the
Besov calculus can be seen as a result on multipliers for $T$. In
this paper, we use fractional derivation to analyse in detail the
relationship between $\Lambda_{\infty,1}^\alpha$ and Banach algebras
of Mikhlin-type. As a result, we obtain a new version of the quoted
equivalence.
Keywords:functional calculus, fractional calculus, Mikhlin multipliers, analytic semigroups, unbounded operators, quasimultipliers Categories:47A60, 47D03, 46J15, 26A33, 47L60, 47B48, 43A22 |
14. CJM 2008 (vol 60 pp. 1001)
Isometric Group Actions on Hilbert Spaces: Structure of Orbits Our main result is that a finitely generated nilpotent group has
no isometric action on an infinite-dimensional Hilbert space with
dense orbits. In contrast, we construct such an action with a
finitely generated metabelian group.
Keywords:affine actions, Hilbert spaces, minimal actions, nilpotent groups Categories:22D10, 43A35, 20F69 |
15. CJM 2007 (vol 59 pp. 966)
Operator Amenability of the Fourier Algebra in the $\cb$-Multiplier Norm Let $G$ be a locally compact group, and let $A_{\cb}(G)$ denote the
closure of $A(G)$, the Fourier algebra of $G$, in the space of completely
bounded multipliers of $A(G)$. If $G$ is a weakly amenable, discrete group
such that $\cstar(G)$ is residually finite-dimensional, we show that
$A_{\cb}(G)$ is operator amenable. In particular,
$A_{\cb}(\free_2)$ is operator amenable even though $\free_2$, the free
group in two generators, is not an amenable group. Moreover, we show that
if $G$ is a discrete group such that $A_{\cb}(G)$ is operator amenable,
a closed ideal of $A(G)$ is weakly completely complemented in $A(G)$
if and only if it has an approximate identity bounded in the $\cb$-multiplier
norm.
Keywords:$\cb$-multiplier norm, Fourier algebra, operator amenability, weak amenability Categories:43A22, 43A30, 46H25, 46J10, 46J40, 46L07, 47L25 |
16. CJM 2007 (vol 59 pp. 795)
The Choquet--Deny Equation in a Banach Space Let $G$ be a locally compact group and $\pi$ a representation of
$G$ by weakly$^*$ continuous isometries acting in a dual Banach space $E$.
Given a
probability measure $\mu$ on $G$, we study the Choquet--Deny equation
$\pi(\mu)x=x$, $x\in E$. We prove that the solutions of this equation
form the range of a projection of norm $1$ and can be represented by means of a
``Poisson formula'' on the same boundary space that is used to represent the
bounded harmonic functions of the random walk of law $\mu$. The relation
between the space of solutions of the Choquet--Deny equation in $E$ and the
space of bounded harmonic functions can be understood in terms of a
construction resembling the $W^*$-crossed product and coinciding precisely
with the crossed product in the special case of the Choquet--Deny equation in
the space $E=B(L^2(G))$ of bounded linear operators on $L^2(G)$. Other
general properties of the Choquet--Deny equation in a Banach space are also
discussed.
Categories:22D12, 22D20, 43A05, 60B15, 60J50 |
17. CJM 2007 (vol 59 pp. 225)
Harmonic Analysis on Metrized Graphs This paper studies the Laplacian operator on a metrized graph, and its
spectral theory.
Keywords:metrized graph, harmonic analysis, eigenfunction Categories:43A99, 58C40, 05C99 |
18. CJM 2006 (vol 58 pp. 768)
Decomposability of von Neumann Algebras and the Mazur Property of Higher Level The decomposability
number of a von Neumann algebra $\m$ (denoted by $\dec(\m)$) is the
greatest cardinality of a family of pairwise orthogonal non-zero
projections in $\m$. In this paper, we explore the close
connection between $\dec(\m)$ and the cardinal level of the Mazur
property for the predual $\m_*$ of $\m$, the study of which was
initiated by the second author. Here, our main focus is on
those von Neumann algebras whose preduals constitute such
important Banach algebras on a locally compact group $G$ as the
group algebra $\lone$, the Fourier algebra $A(G)$, the measure
algebra $M(G)$, the algebra $\luc^*$, etc. We show that for
any of these von Neumann algebras, say $\m$, the cardinal number
$\dec(\m)$ and a certain cardinal level of the Mazur property of $\m_*$
are completely encoded in the underlying group structure. In fact,
they can be expressed precisely by two dual cardinal
invariants of $G$: the compact covering number $\kg$ of $G$ and
the least cardinality $\bg$ of an open basis at the identity of
$G$. We also present an application of the Mazur property of higher
level to the topological centre problem for the Banach algebra
$\ag^{**}$.
Keywords:Mazur property, predual of a von Neumann algebra, locally compact group and its cardinal invariants, group algebra, Fourier algebra, topological centre Categories:22D05, 43A20, 43A30, 03E55, 46L10 |
19. CJM 2006 (vol 58 pp. 691)
Hypoelliptic Bi-Invariant Laplacians on Infinite Dimensional Compact Groups On a compact connected group $G$, consider the infinitesimal
generator $-L$ of a central symmetric Gaussian convolution
semigroup $(\mu_t)_{t>0}$. Using appropriate notions of distribution
and smooth function spaces, we prove that $L$ is hypoelliptic if and only if
$(\mu_t)_{t>0} $ is absolutely continuous with respect to Haar measure
and admits a continuous density $x\mapsto \mu_t(x)$, $t>0$, such that
$\lim_{t\ra 0} t\log \mu_t(e)=0$. In particular, this condition holds
if and only if any Borel measure $u$ which is solution of $Lu=0$
in an open set $\Omega$ can be represented by a continuous
function in $\Omega$. Examples are discussed.
Categories:60B15, 43A77, 35H10, 46F25, 60J45, 60J60 |
20. CJM 2005 (vol 57 pp. 1193)
Some Conditions for Decay of Convolution Powers and Heat Kernels on Groups Let $K$ be a function on a unimodular locally compact group
$G$, and denote by $K_n = K*K* \cdots * K$ the $n$-th convolution
power of $K$.
Assuming that $K$ satisfies certain operator estimates in $L^2(G)$,
we give estimates of
the norms $\|K_n\|_2$ and $\|K_n\|_\infty$
for large $n$.
In contrast to previous methods for estimating $\|K_n\|_\infty$,
we do not need to assume that
the function $K$ is a probability density or non-negative.
Our results also adapt for continuous time semigroups on $G$.
Various applications are given, for example, to estimates of
the behaviour of heat kernels on Lie groups.
Categories:22E30, 35B40, 43A99 |
21. CJM 2005 (vol 57 pp. 598)
Local Solvability of Laplacian Difference Operators Arising from the Discrete Heisenberg Group Differential operators $D_x$, $D_y$, and $D_z$ are formed using the
action of the $3$-dimensional discrete Heisenberg group $G$ on a set
$S$, and the operators will act on functions on $S$. The Laplacian
operator $L=D_x^2 + D_y^2 + D_z^2$ is a difference operator with
variable differences which can be associated to a unitary
representation of $G$ on the Hilbert space $L^2(S)$. Using techniques
from harmonic analysis and representation theory, we show that the
Laplacian operator is locally solvable.
Keywords:discrete Heisenberg group,, unitary representation,, local solvability,, difference operator Categories:43A85, 22D10, 39A70 |
22. CJM 2005 (vol 57 pp. 99)
Second Order Operators on a Compact Lie Group We describe the structure of the space of second order elliptic
differential operators on a homogenous bundle over a compact Lie
group. Subject to a technical condition, these operators are
homotopic to the Laplacian. The technical condition is further
investigated, with examples given where it holds and others where
it does not. Since many spectral invariants are also homotopy
invariants, these results provide information about the invariants
of these operators.
Categories:58J70, 43A77 |
23. CJM 2005 (vol 57 pp. 17)
On Amenability and Co-Amenability of Algebraic Quantum Groups and Their Corepresentations We introduce and study several notions of amenability for unitary
corepresentations and $*$-representations of algebraic quantum groups,
which may be used to characterize amenability and co-amenability for
such quantum groups. As a background for this study, we investigate
the associated tensor C$^{*}$-categories.
Keywords:quantum group, amenability Categories:46L05, 46L65, 22D10, 22D25, 43A07, 43A65, 58B32 |
24. CJM 2004 (vol 56 pp. 1259)
The Fourier Algebra for Locally Compact Groupoids We introduce and investigate using Hilbert modules the properties
of the {\em Fourier algebra} $A(G)$ for
a locally compact groupoid $G$. We establish a duality theorem for
such groupoids in terms of multiplicative module maps. This includes
as a special case the classical duality theorem for locally compact
groups proved by P. Eymard.
Keywords:Fourier algebra, locally compact groupoids, Hilbert modules,, positive definite functions, completely bounded maps Category:43A32 |
25. CJM 2004 (vol 56 pp. 431)
Group Actions and Singular Martingales II, The Recognition Problem We continue our investigation in [RST] of a martingale formed by picking a
measurable set $A$ in a compact group $G$, taking random rotates of $A$, and
considering measures of the resulting intersections, suitably normalized. Here
we concentrate on the inverse problem of recognizing $A$ from a small amount of
data from this martingale. This leads to problems in harmonic analysis on $G$,
including an analysis of integrals of products of Gegenbauer polynomials.
Categories:43A77, 60B15, 60G42, 42C10 |