CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 42B30 ( $H^p$-spaces )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2010 (vol 62 pp. 1419)

Yang, Dachun; Yang, Dongyong
BMO-Estimates for Maximal Operators via Approximations of the Identity with Non-Doubling Measures
Let $\mu$ be a nonnegative Radon measure on $\mathbb{R}^d$ that satisfies the growth condition that there exist constants $C_0>0$ and $n\in(0,d]$ such that for all $x\in\mathbb{R}^d$ and $r>0$, ${\mu(B(x,\,r))\le C_0r^n}$, where $B(x,r)$ is the open ball centered at $x$ and having radius $r$. In this paper, the authors prove that if $f$ belongs to the $\textrm {BMO}$-type space $\textrm{RBMO}(\mu)$ of Tolsa, then the homogeneous maximal function $\dot{\mathcal{M}}_S(f)$ (when $\mathbb{R}^d$ is not an initial cube) and the inhomogeneous maximal function $\mathcal{M}_S(f)$ (when $\mathbb{R}^d$ is an initial cube) associated with a given approximation of the identity $S$ of Tolsa are either infinite everywhere or finite almost everywhere, and in the latter case, $\dot{\mathcal{M}}_S$ and $\mathcal{M}_S$ are bounded from $\textrm{RBMO}(\mu)$ to the $\textrm {BLO}$-type space $\textrm{RBLO}(\mu)$. The authors also prove that the inhomogeneous maximal operator $\mathcal{M}_S$ is bounded from the local $\textrm {BMO}$-type space $\textrm{rbmo}(\mu)$ to the local $\textrm {BLO}$-type space $\textrm{rblo}(\mu)$.

Keywords:Non-doubling measure, maximal operator, approximation of the identity, RBMO(mu), RBLO(mu), rbmo(mu), rblo(mu)
Categories:42B25, 42B30, 47A30, 43A99

2. CJM 2007 (vol 59 pp. 1207)

Bu, Shangquan; Le, Christian
$H^p$-Maximal Regularity and Operator Valued Multipliers on Hardy Spaces
We consider maximal regularity in the $H^p$ sense for the Cauchy problem $u'(t) + Au(t) = f(t)\ (t\in \R)$, where $A$ is a closed operator on a Banach space $X$ and $f$ is an $X$-valued function defined on $\R$. We prove that if $X$ is an AUMD Banach space, then $A$ satisfies $H^p$-maximal regularity if and only if $A$ is Rademacher sectorial of type $<\frac{\pi}{2}$. Moreover we find an operator $A$ with $H^p$-maximal regularity that does not have the classical $L^p$-maximal regularity. We prove a related Mikhlin type theorem for operator valued Fourier multipliers on Hardy spaces $H^p(\R;X)$, in the case when $X$ is an AUMD Banach space.

Keywords:$L^p$-maximal regularity, $H^p$-maximal regularity, Rademacher boundedness
Categories:42B30, 47D06

3. CJM 1998 (vol 50 pp. 605)

Guzmán-Partida, Martha; Pérez-Esteva, Salvador
Hardy spaces of conjugate systems of temperatures
We define Hardy spaces of conjugate systems of temperature functions on ${\bbd R}_{+}^{n+1}$. We show that their boundary distributions are the same as the boundary distributions of the usual Hardy spaces of conjugate systems of harmonic functions.

Categories:42B30, 42A50, 35K05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/