Expand all Collapse all | Results 1 - 4 of 4 |
1. CJM 2013 (vol 66 pp. 284)
Random Harmonic Functions in Growth Spaces and Bloch-type Spaces Let $h^\infty_v(\mathbf D)$ and $h^\infty_v(\mathbf B)$ be the spaces
of harmonic functions in the unit disk and multi-dimensional unit
ball
which admit a two-sided radial majorant $v(r)$.
We consider functions $v $ that fulfill a doubling condition. In the
two-dimensional case let $u (re^{i\theta},\xi) = \sum_{j=0}^\infty
(a_{j0} \xi_{j0} r^j \cos j\theta +a_{j1} \xi_{j1} r^j \sin j\theta)$
where $\xi =\{\xi_{ji}\}$ is a sequence of random
subnormal variables and $a_{ji}$ are
real; in higher dimensions we consider series of spherical harmonics.
We will obtain conditions on the coefficients $a_{ji} $ which imply
that $u$ is in $h^\infty_v(\mathbf B)$ almost surely.
Our estimate improves previous results by Bennett, Stegenga and
Timoney, and we prove that the estimate is sharp.
The results for growth spaces can easily be applied to Bloch-type
spaces, and we obtain a similar characterization for these spaces,
which generalizes results by Anderson, Clunie and Pommerenke and by
Guo and Liu.
Keywords:harmonic functions, random series, growth space, Bloch-type space Categories:30B20, 31B05, 30H30, 42B05 |
2. CJM 2012 (vol 65 pp. 600)
Christoffel Functions and Universality in the Bulk for Multivariate Orthogonal Polynomials We establish asymptotics for Christoffel functions associated with
multivariate orthogonal polynomials. The underlying measures are assumed to
be regular on a suitable domain - in particular this is true if they are
positive a.e. on a compact set that admits analytic parametrization. As a
consequence, we obtain asymptotics for Christoffel functions for measures on
the ball and simplex, under far more general conditions than previously
known. As another consequence, we establish universality type limits in the
bulk in a variety of settings.
Keywords:orthogonal polynomials, random matrices, unitary ensembles, correlation functions, Christoffel functions Categories:42C05, 42C99, 42B05, 60B20 |
3. CJM 2011 (vol 64 pp. 1036)
Harmonic Analysis Related to Homogeneous Varieties in Three Dimensional Vector Spaces over Finite Fields |
Harmonic Analysis Related to Homogeneous Varieties in Three Dimensional Vector Spaces over Finite Fields In this paper we study the extension problem, the
averaging problem, and the generalized ErdÅs-Falconer distance
problem associated with arbitrary homogeneous varieties in three
dimensional vector spaces over finite fields. In the case when the
varieties do not contain any plane passing through the origin, we
obtain the best possible results on the aforementioned three problems. In
particular, our result on the extension problem modestly generalizes
the result by Mockenhaupt and Tao who studied the particular conical
extension problem. In addition, investigating the Fourier decay on
homogeneous varieties enables us to give complete mapping properties
of averaging operators. Moreover, we improve the size condition on a
set such that the cardinality of its distance set is nontrivial.
Keywords:extension problems, averaging operator, finite fields, ErdÅs-Falconer distance problems, homogeneous polynomial Categories:42B05, 11T24, 52C17 |
4. CJM 2008 (vol 60 pp. 685)
Closed and Exact Functions in the Context of Ginzburg--Landau Models For a general vector field we exhibit two Hilbert spaces, namely
the space of so called \emph{closed functions} and the space of \emph{exact functions}
and we calculate the codimension of the space of exact functions
inside the larger space of closed functions.
In particular we provide a new approach for the known cases:
the Glauber field and the second-order Ginzburg--Landau field
and for the case of the fourth-order Ginzburg--Landau field.
Keywords:Hermite polynomials, Fock space, Fourier coefficients, Fourier transform, group of symmetries Categories:42B05, 81Q50, 42A16 |