1. CJM 2009 (vol 61 pp. 373)
 McKee, Mark

An Infinite Order Whittaker Function
In this paper we construct a flat smooth section of an induced space
$I(s,\eta)$ of $SL_2(\mathbb{R})$ so that the attached Whittaker function
is not of finite order.
An asymptotic method of classical analysis is used.
Categories:11F70, 22E45, 41A60, 11M99, 30D15, 33C15 

2. CJM 2006 (vol 58 pp. 1026)
 Handelman, David

Karamata Renewed and Local Limit Results
Connections between behaviour of real analytic functions (with no
negative Maclaurin series coefficients and radius of convergence one)
on the open unit interval, and to a lesser extent on arcs of the unit
circle, are explored, beginning with Karamata's approach. We develop
conditions under which the asymptotics of the coefficients are related
to the values of the function near $1$; specifically, $a(n)\sim
f(11/n)/ \alpha n$ (for some positive constant $\alpha$), where
$f(t)=\sum a(n)t^n$. In particular, if $F=\sum c(n) t^n$ where $c(n)
\geq 0$ and $\sum c(n)=1$, then $f$ defined as $(1F)^{1}$ (the
renewal or Green's function for $F$) satisfies this condition if $F'$
does (and a minor additional condition is satisfied). In come cases,
we can show that the absolute sum of the differences of consecutive
Maclaurin coefficients converges. We also investigate situations in
which less precise asymptotics are available.
Categories:30B10, 30E15, 41A60, 60J35, 05A16 

3. CJM 1998 (vol 50 pp. 412)
 McIntosh, Richard J.

Asymptotic transformations of $q$series
For the $q$series $\sum_{n=0}^\infty a^nq^{bn^2+cn}/(q)_n$
we construct a companion $q$series such that the asymptotic
expansions of their logarithms as $q\to 1^{\scriptscriptstyle }$
differ only in the dominant few terms. The asymptotic expansion
of their quotient then has a simple closed form; this gives rise
to a new $q$hypergeometric identity. We give an asymptotic
expansion of a general class of $q$series containing some of
Ramanujan's mock theta functions and Selberg's identities.
Categories:11B65, 33D10, 34E05, 41A60 
