CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 41A21 ( Pade approximation )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2009 (vol 61 pp. 1341)

Rivoal, Tanguy
Simultaneous Polynomial Approximations of the Lerch Function
We construct bivariate polynomial approximations of the Lerch function that for certain specialisations of the variables and parameters turn out to be Hermite--Pad\'e approximants either of the polylogarithms or of Hurwitz zeta functions. In the former case, we recover known results, while in the latter the results are new and generalise some recent works of Beukers and Pr\'evost. Finally, we make a detailed comparison of our work with Beukers'. Such constructions are useful in the arithmetical study of the values of the Riemann zeta function at integer points and of the Kubota--Leopold $p$-adic zeta function.

Categories:41A10, 41A21, 11J72

2. CJM 2006 (vol 58 pp. 249)

Bello Hernández, M.; Mínguez Ceniceros, J.
Convergence of Fourier--Padé Approximants for Stieltjes Functions
We prove convergence of diagonal multipoint Pad\'e approximants of Stieltjes-type functions when a certain moment problem is determinate. This is used for the study of the convergence of Fourier--Pad\'e and nonlinear Fourier--Pad\'e approximants for such type of functions.

Keywords:rational approximation, multipoint Padé approximants, Fourier--Padé approximants, moment problem
Categories:41A20, 41A21, 44A60

3. CJM 2003 (vol 55 pp. 576)

Lukashov, A. L.; Peherstorfer, F.
Automorphic Orthogonal and Extremal Polynomials
It is well known that many polynomials which solve extremal problems on a single interval as the Chebyshev or the Bernstein-Szeg\"o polynomials can be represented by trigonometric functions and their inverses. On two intervals one has elliptic instead of trigonometric functions. In this paper we show that the counterparts of the Chebyshev and Bernstein-Szeg\"o polynomials for several intervals can be represented with the help of automorphic functions, so-called Schottky-Burnside functions. Based on this representation and using the Schottky-Burnside automorphic functions as a tool several extremal properties of such polynomials as orthogonality properties, extremal properties with respect to the maximum norm, behaviour of zeros and recurrence coefficients {\it etc.} are derived.

Categories:42C05, 30F35, 31A15, 41A21, 41A50

4. CJM 2000 (vol 52 pp. 815)

Lubinsky, D. S.
On the Maximum and Minimum Modulus of Rational Functions
We show that if $m$, $n\geq 0$, $\lambda >1$, and $R$ is a rational function with numerator, denominator of degree $\leq m$, $n$, respectively, then there exists a set $\mathcal{S}\subset [0,1] $ of linear measure $\geq \frac{1}{4}\exp (-\frac{13}{\log \lambda })$ such that for $r\in \mathcal{S}$, \[ \max_{|z| =r}| R(z)| / \min_{|z| =r} | R(z) |\leq \lambda ^{m+n}. \] Here, one may not replace $\frac{1}{4}\exp ( -\frac{13}{\log \lambda })$ by $\exp (-\frac{2-\varepsilon }{\log \lambda })$, for any $\varepsilon >0$. As our motivating application, we prove a convergence result for diagonal Pad\'{e} approximants for functions meromorphic in the unit ball.

Categories:30E10, 30C15, 31A15, 41A21

© Canadian Mathematical Society, 2014 : https://cms.math.ca/