Expand all Collapse all | Results 1 - 6 of 6 |
1. CJM 2010 (vol 63 pp. 241)
Multiple Zeta-Functions Associated with Linear Recurrence Sequences and the Vectorial Sum Formula
We prove the holomorphic continuation of certain multi-variable multiple
zeta-functions whose coefficients satisfy a suitable recurrence condition.
In fact, we introduce more general vectorial zeta-functions and prove their
holomorphic continuation. Moreover, we show a vectorial sum formula among
those vectorial zeta-functions from which some generalizations of the
classical sum formula can be deduced.
Keywords:Zeta-functions, holomorphic continuation, recurrence sequences, Fibonacci numbers, sum formulas Categories:11M41, 40B05, 11B39 |
2. CJM 2008 (vol 60 pp. 520)
Matrices Whose Norms Are Determined by Their Actions on Decreasing Sequences Let $A=(a_{j,k})_{j,k \ge 1}$ be a non-negative matrix. In this
paper, we characterize those $A$ for which $\|A\|_{E, F}$ are
determined by their actions on decreasing sequences, where $E$ and
$F$ are suitable normed Riesz spaces of sequences. In particular,
our results can apply to the following spaces: $\ell_p$, $d(w,p)$,
and $\ell_p(w)$. The results established here generalize
ones given by Bennett; Chen, Luor, and Ou; Jameson; and
Jameson and Lashkaripour.
Keywords:norms of matrices, normed Riesz spaces, weighted mean matrices, NÃ¶rlund mean matrices, summability matrices, matrices with row decreasing Categories:15A60, 40G05, 47A30, 47B37, 46B42 |
3. CJM 2007 (vol 59 pp. 85)
On the Convergence of a Class of Nearly Alternating Series Let $C$ be the class of convex sequences of real numbers. The
quadratic irrational numbers can be partitioned into two types as
follows. If $\alpha$ is of the first type and $(c_k) \in C$, then
$\sum (-1)^{\lfloor k\alpha \rfloor} c_k$ converges if and only if
$c_k \log k \rightarrow 0$. If $\alpha$ is of the second type and
$(c_k) \in C$, then $\sum (-1)^{\lfloor k\alpha \rfloor} c_k$
converges if and only if $\sum c_k/k$ converges. An example of a
quadratic irrational of the first type is $\sqrt{2}$, and an
example of the second type is $\sqrt{3}$. The analysis of this
problem relies heavily on the representation of $ \alpha$ as a
simple continued fraction and on properties of the sequences of
partial sums $S(n)=\sum_{k=1}^n (-1)^{\lfloor k\alpha \rfloor}$
and double partial sums $T(n)=\sum_{k=1}^n S(k)$.
Keywords:Series, convergence, almost alternating, convex, continued fractions Categories:40A05, 11A55, 11B83 |
4. CJM 2006 (vol 58 pp. 548)
Hausdorff and Quasi-Hausdorff Matrices on Spaces of Analytic Functions We consider Hausdorff and quasi-Hausdorff matrices as operators
on classical spaces of analytic functions such as the Hardy and
the Bergman spaces, the Dirichlet space, the Bloch spaces and $\BMOA$. When the generating
sequence of the matrix is the moment sequence of a measure $\mu$,
we find the conditions on $\mu$ which are equivalent to the boundedness
of the matrix on the various spaces.
Categories:47B38, 46E15, 40G05, 42A20 |
5. CJM 2005 (vol 57 pp. 941)
Some Transformations of Hausdorff Moment Sequences and Harmonic Numbers We introduce some non-linear transformations from the set of
Hausdorff moment sequences into itself; among
them is the one defined by
the formula:
$T((a_n)_n)=1/(a_0+\dots +a_n)$. We give some examples of
Hausdorff moment sequences arising from the transformations and
provide the corresponding measures: one of these sequences is the
reciprocal of the harmonic numbers $(1+1/2+\dots +1/(n+1))^{-1}$.
Categories:44A60, 40B05 |
6. CJM 2001 (vol 53 pp. 866)
Inverse Problems for Partition Functions Let $p_w(n)$ be the weighted partition function defined by the
generating function $\sum^\infty_{n=0}p_w(n)x^n=\prod^\infty_{m=1}
(1-x^m)^{-w(m)}$, where $w(m)$ is a non-negative arithmetic function.
Let $P_w(u)=\sum_{n\le u}p_w(n)$ and $N_w(u)=\sum_{n\le u}w(n)$ be the
summatory functions for $p_w(n)$ and $w(n)$, respectively.
Generalizing results of G.~A.~Freiman and E.~E.~Kohlbecker, we show
that, for a large class of functions $\Phi(u)$ and $\lambda(u)$, an
estimate for $P_w(u)$ of the form
$\log P_w(u)=\Phi(u)\bigl\{1+O(1/\lambda(u)\bigr)\bigr\}$
$(u\to\infty)$ implies an estimate for $N_w(u)$ of the form
$N_w(u)=\Phi^\ast(u)\bigl\{1+O\bigl(1/\log\lambda(u)\bigr)\bigr\}$
$(u\to\infty)$ with a suitable function $\Phi^\ast(u)$ defined in
terms of $\Phi(u)$. We apply this result and related results to
obtain characterizations of the Riemann Hypothesis and the
Generalized Riemann Hypothesis in terms of the asymptotic behavior
of certain weighted partition functions.
Categories:11P82, 11M26, 40E05 |