CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 37J15 ( Symmetries, invariants, invariant manifolds, momentum maps, reduction [See also 53D20] )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM Online first

Santoprete, Manuele; Scheurle, Jürgen; Walcher, Sebastian
Motion in a Symmetric Potential on the Hyperbolic Plane
We study the motion of a particle in the hyperbolic plane (embedded in Minkowski space), under the action of a potential that depends only on one variable. This problem is the analogous to the spherical pendulum in a unidirectional force field. However, for the discussion of the hyperbolic plane one has to distinguish three inequivalent cases, depending on the direction of the force field. Symmetry reduction, with respect to groups that are not necessarily compact or even reductive, is carried out by way of Poisson varieties and Hilbert maps. For each case the dynamics is discussed, with special attention to linear potentials.

Keywords:Hamiltonian systems with symmetry, symmetries, non-compact symmetry groups, singular reduction
Categories:37J15, 70H33, 70F99, 37C80, 34C14, , 20G20

2. CJM 2004 (vol 56 pp. 553)

Mohammadalikhani, Ramin
Cohomology Ring of Symplectic Quotients by Circle Actions
In this article we are concerned with how to compute the cohomology ring of a symplectic quotient by a circle action using the information we have about the cohomology of the original manifold and some data at the fixed point set of the action. Our method is based on the Tolman-Weitsman theorem which gives a characterization of the kernel of the Kirwan map. First we compute a generating set for the kernel of the Kirwan map for the case of product of compact connected manifolds such that the cohomology ring of each of them is generated by a degree two class. We assume the fixed point set is isolated; however the circle action only needs to be ``formally Hamiltonian''. By identifying the kernel, we obtain the cohomology ring of the symplectic quotient. Next we apply this result to some special cases and in particular to the case of products of two dimensional spheres. We show that the results of Kalkman and Hausmann-Knutson are special cases of our result.

Categories:53D20, 53D30, 37J10, 37J15, 53D05

3. CJM 2003 (vol 55 pp. 247)

Cushman, Richard; Śniatycki, Jędrzej
Differential Structure of Orbit Spaces: Erratum
This note signals an error in the above paper by giving a counter-example.

Categories:37J15, 58A40, 58D19, 70H33

4. CJM 2001 (vol 53 pp. 715)

Cushman, Richard; Śniatycki, Jędrzej
Differential Structure of Orbit Spaces
We present a new approach to singular reduction of Hamiltonian systems with symmetries. The tools we use are the category of differential spaces of Sikorski and the Stefan-Sussmann theorem. The former is applied to analyze the differential structure of the spaces involved and the latter is used to prove that some of these spaces are smooth manifolds. Our main result is the identification of accessible sets of the generalized distribution spanned by the Hamiltonian vector fields of invariant functions with singular reduced spaces. We are also able to describe the differential structure of a singular reduced space corresponding to a coadjoint orbit which need not be locally closed.

Keywords:accessible sets, differential space, Poisson algebra, proper action, singular reduction, symplectic manifolds
Categories:37J15, 58A40, 58D19, 70H33

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/