Expand all Collapse all | Results 1 - 3 of 3 |
1. CJM Online first
Outer Partial Actions and Partial Skew Group Rings We extend the classicial notion of an outer action
$\alpha$ of a group $G$ on a unital ring $A$
to the case when $\alpha$ is a partial action
on ideals, all of which have local units.
We show that if $\alpha$ is an outer partial
action of an abelian group $G$,
then its associated partial skew group
ring $A \star_\alpha G$ is simple if and only if
$A$ is $G$-simple.
This result is applied to partial skew group rings associated with two different types of partial dynamical systems.
Keywords:outer action, partial action, minimality, topological dynamics, partial skew group ring, simplicity Categories:16W50, 37B05, 37B99, 54H15, 54H20 |
2. CJM 2013 (vol 65 pp. 1287)
$K$-theory of Furstenberg Transformation Group $C^*$-algebras The paper studies the $K$-theoretic invariants of the crossed product
$C^{*}$-algebras associated with an important family of homeomorphisms
of the tori $\mathbb{T}^{n}$ called Furstenberg transformations.
Using the Pimsner-Voiculescu theorem, we prove that given $n$, the
$K$-groups of those crossed products, whose corresponding $n\times n$
integer matrices are unipotent of maximal degree, always have the same
rank $a_{n}$. We show using the theory developed here that a claim
made in the literature about the torsion subgroups of these $K$-groups
is false. Using the representation theory of the simple Lie algebra
$\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a
combinatorial significance. For example, every $a_{2n+1}$ is just the
number of ways that $0$ can be represented as a sum of integers
between $-n$ and $n$ (with no repetitions). By adapting an argument
of van Lint (in which he answered a question of ErdÅs), a simple,
explicit formula for the asymptotic behavior of the sequence
$\{a_{n}\}$ is given. Finally, we describe the order structure of the
$K_{0}$-groups of an important class of Furstenberg crossed products,
obtaining their complete Elliott invariant using classification
results of H. Lin and N. C. Phillips.
Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20 |
3. CJM 2007 (vol 59 pp. 596)
Eigenvalues, $K$-theory and Minimal Flows Let $(Y,T)$ be a minimal suspension flow built over a dynamical
system $(X,S)$ and with (strictly positive, continuous) ceiling
function $f\colon X\to\R$. We show that the eigenvalues of
$(Y,T)$ are contained in the range of a trace on the $K_0$-group
of $(X,S)$. Moreover, a trace gives an order isomorphism of a
subgroup of $K_0(\cprod{C(X)}{S})$ with the group of
eigenvalues of $(Y,T)$. Using this result, we relate the values of
$t$ for which the time-$t$ map on the minimal suspension flow is
minimal with the $K$-theory of the base of this suspension.
Categories:37A55, 37B05 |