CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 37A55 ( Relations with the theory of $C^$-algebras [See mainly 46L55] *$-algebras [See mainly 46L55] * )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2008 (vol 60 pp. 189)

Lin, Huaxin
Furstenberg Transformations and Approximate Conjugacy
Let $\alpha$ and $\beta$ be two Furstenberg transformations on $2$-torus associated with irrational numbers $\theta_1,$ $\theta_2,$ integers $d_1, d_2$ and Lipschitz functions $f_1$ and $f_2$. It is shown that $\alpha$ and $\beta$ are approximately conjugate in a measure theoretical sense if (and only if) $\overline{\theta_1\pm \theta_2}=0$ in $\R/\Z.$ Closely related to the classification of simple amenable \CAs, it is shown that $\af$ and $\bt$ are approximately $K$-conjugate if (and only if) $\overline{\theta_1\pm \theta_2}=0$ in $\R/\Z$ and $|d_1|=|d_2|.$ This is also shown to be equivalent to the condition that the associated crossed product \CAs are isomorphic.

Keywords:Furstenberg transformations, approximate conjugacy
Categories:37A55, 46L35

2. CJM 2007 (vol 59 pp. 596)

Itzá-Ortiz, Benjamín A.
Eigenvalues, $K$-theory and Minimal Flows
Let $(Y,T)$ be a minimal suspension flow built over a dynamical system $(X,S)$ and with (strictly positive, continuous) ceiling function $f\colon X\to\R$. We show that the eigenvalues of $(Y,T)$ are contained in the range of a trace on the $K_0$-group of $(X,S)$. Moreover, a trace gives an order isomorphism of a subgroup of $K_0(\cprod{C(X)}{S})$ with the group of eigenvalues of $(Y,T)$. Using this result, we relate the values of $t$ for which the time-$t$ map on the minimal suspension flow is minimal with the $K$-theory of the base of this suspension.

Categories:37A55, 37B05

3. CJM 2006 (vol 58 pp. 39)

Exel, R.; Vershik, A.
$C^*$-Algebras of Irreversible Dynamical Systems
We show that certain $C^*$-algebras which have been studied by, among others, Arzumanian, Vershik, Deaconu, and Renault, in connection with a measure-preserving transformation of a measure space or a covering map of a compact space, are special cases of the endomorphism crossed-product construction recently introduced by the first named author. As a consequence these algebras are given presentations in terms of generators and relations. These results come as a consequence of a general theorem on faithfulness of representations which are covariant with respect to certain circle actions. For the case of topologically free covering maps we prove a stronger result on faithfulness of representations which needs no covariance. We also give a necessary and sufficient condition for simplicity.

Categories:46L55, 37A55

© Canadian Mathematical Society, 2014 : https://cms.math.ca/