CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 35Q40 ( PDEs in connection with quantum mechanics )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2008 (vol 60 pp. 1168)

Taylor, Michael
Short Time Behavior of Solutions to Linear and Nonlinear Schr{ödinger Equations
We examine the fine structure of the short time behavior of solutions to various linear and nonlinear Schr{\"o}dinger equations $u_t=i\Delta u+q(u)$ on $I\times\RR^n$, with initial data $u(0,x)=f(x)$. Particular attention is paid to cases where $f$ is piecewise smooth, with jump across an $(n-1)$-dimensional surface. We give detailed analyses of Gibbs-like phenomena and also focusing effects, including analogues of the Pinsky phenomenon. We give results for general $n$ in the linear case. We also have detailed analyses for a broad class of nonlinear equations when $n=1$ and $2$, with emphasis on the analysis of the first order correction to the solution of the corresponding linear equation. This work complements estimates on the error in this approximation.

Categories:35Q55, 35Q40

2. CJM 2008 (vol 60 pp. 572)

Hitrik, Michael; Sj{östrand, Johannes
Non-Selfadjoint Perturbations of Selfadjoint Operators in Two Dimensions IIIa. One Branching Point
This is the third in a series of works devoted to spectral asymptotics for non-selfadjoint perturbations of selfadjoint $h$-pseudodifferential operators in dimension 2, having a periodic classical flow. Assuming that the strength $\epsilon$ of the perturbation is in the range $h^2\ll \epsilon \ll h^{1/2}$ (and may sometimes reach even smaller values), we get an asymptotic description of the eigenvalues in rectangles $[-1/C,1/C]+i\epsilon [F_0-1/C,F_0+1/C]$, $C\gg 1$, when $\epsilon F_0$ is a saddle point value of the flow average of the leading perturbation.

Keywords:non-selfadjoint, eigenvalue, periodic flow, branching singularity
Categories:31C10, 35P20, 35Q40, 37J35, 37J45, 53D22, 58J40

3. CJM 1998 (vol 50 pp. 1298)

Milson, Robert
Imprimitively generated Lie-algebraic Hamiltonians and separation of variables
Turbiner's conjecture posits that a Lie-algebraic Hamiltonian operator whose domain is a subset of the Euclidean plane admits a separation of variables. A proof of this conjecture is given in those cases where the generating Lie-algebra acts imprimitively. The general form of the conjecture is false. A counter-example is given based on the trigonometric Olshanetsky-Perelomov potential corresponding to the $A_2$ root system.

Categories:35Q40, 53C30, 81R05

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/