Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 35J60 ( Nonlinear elliptic equations )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2009 (vol 62 pp. 19)

Bouchekif, Mohammed; Nasri, Yasmina
Solutions for Semilinear Elliptic Systems with Critical Sobolev Exponent and Hardy Potential
In this paper we consider an elliptic system with an inverse square potential and critical Sobolev exponent in a bounded domain of $\mathbb{R}^N$. By variational methods we study the existence results.

Keywords:critical Sobolev exponent, Palais--Smale condition, Linking theorem, Hardy potential
Categories:35B25, 35B33, 35J50, 35J60

2. CJM 2006 (vol 58 pp. 64)

Filippakis, Michael; Gasiński, Leszek; Papageorgiou, Nikolaos S.
Multiplicity Results for Nonlinear Neumann Problems
In this paper we study nonlinear elliptic problems of Neumann type driven by the $p$-Laplac\-ian differential operator. We look for situations guaranteeing the existence of multiple solutions. First we study problems which are strongly resonant at infinity at the first (zero) eigenvalue. We prove five multiplicity results, four for problems with nonsmooth potential and one for problems with a $C^1$-potential. In the last part, for nonsmooth problems in which the potential eventually exhibits a strict super-$p$-growth under a symmetry condition, we prove the existence of infinitely many pairs of nontrivial solutions. Our approach is variational based on the critical point theory for nonsmooth functionals. Also we present some results concerning the first two elements of the spectrum of the negative $p$-Laplacian with Neumann boundary condition.

Keywords:Nonsmooth critical point theory, locally Lipschitz function,, Clarke subdifferential, Neumann problem, strong resonance,, second deformation theorem, nonsmooth symmetric mountain pass theorem,, $p$-Laplacian
Categories:35J20, 35J60, 35J85

3. CJM 2002 (vol 54 pp. 1121)

Bao, Jiguang
Fully Nonlinear Elliptic Equations on General Domains
By means of the Pucci operator, we construct a function $u_0$, which plays an essential role in our considerations, and give the existence and regularity theorems for the bounded viscosity solutions of the generalized Dirichlet problems of second order fully nonlinear elliptic equations on the general bounded domains, which may be irregular. The approximation method, the accretive operator technique and the Caffarelli's perturbation theory are used.

Keywords:Pucci operator, viscosity solution, existence, $C^{2,\psi}$ regularity, Dini condition, fully nonlinear equation, general domain, accretive operator, approximation lemma
Categories:35D05, 35D10, 35J60, 35J67

4. CJM 2000 (vol 52 pp. 757)

Hanani, Abdellah
Le problème de Neumann pour certaines équations du type de Monge-Ampère sur une variété riemannienne
Let $(M_n,g)$ be a strictly convex riemannian manifold with $C^{\infty}$ boundary. We prove the existence\break of classical solution for the nonlinear elliptic partial differential equation of Monge-Amp\`ere:\break $\det (-u\delta^i_j + \nabla^i_ju) = F(x,\nabla u;u)$ in $M$ with a Neumann condition on the boundary of the form $\frac{\partial u}{\partial \nu} = \varphi (x,u)$, where $F \in C^{\infty} (TM \times \bbR)$ is an everywhere strictly positive function satisfying some assumptions, $\nu$ stands for the unit normal vector field and $\varphi \in C^{\infty} (\partial M \times \bbR)$ is a non-decreasing function in $u$.

Keywords:connexion de Levi-Civita, équations de Monge-Ampère, problème de Neumann, estimées a priori, méthode de continuité
Categories:35J60, 53C55, 58G30

© Canadian Mathematical Society, 2014 :