CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 35J40 ( Boundary value problems for higher-order elliptic equations )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2000 (vol 52 pp. 522)

Gui, Changfeng; Wei, Juncheng
On Multiple Mixed Interior and Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems
We consider the problem \begin{equation*} \begin{cases} \varepsilon^2 \Delta u - u + f(u) = 0, u > 0 & \mbox{in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 & \mbox{on } \partial\Omega, \end{cases} \end{equation*} where $\Omega$ is a bounded smooth domain in $R^N$, $\ve>0$ is a small parameter and $f$ is a superlinear, subcritical nonlinearity. It is known that this equation possesses multiple boundary spike solutions that concentrate, as $\epsilon$ approaches zero, at multiple critical points of the mean curvature function $H(P)$, $P \in \partial \Omega$. It is also proved that this equation has multiple interior spike solutions which concentrate, as $\ep\to 0$, at {\it sphere packing\/} points in $\Om$. In this paper, we prove the existence of solutions with multiple spikes {\it both\/} on the boundary and in the interior. The main difficulty lies in the fact that the boundary spikes and the interior spikes usually have different scales of error estimation. We have to choose a special set of boundary spikes to match the scale of the interior spikes in a variational approach.

Keywords:mixed multiple spikes, nonlinear elliptic equations
Categories:35B40, 35B45, 35J40

2. CJM 1998 (vol 50 pp. 40)

Engliš, Miroslav; Peetre, Jaak
Green's functions for powers of the invariant Laplacian
The aim of the present paper is the computation of Green's functions for the powers $\DDelta^m$ of the invariant Laplace operator on rank-one Hermitian symmetric spaces. Starting with the noncompact case, the unit ball in $\CC^d$, we obtain a complete result for $m=1,2$ in all dimensions. For $m\ge3$ the formulas grow quite complicated so we restrict ourselves to the case of the unit disc ($d=1$) where we develop a method, possibly applicable also in other situations, for reducing the number of integrations by half, and use it to give a description of the boundary behaviour of these Green functions and to obtain their (multi-valued) analytic continuation to the entire complex plane. Next we discuss the type of special functions that turn up (hyperlogarithms of Kummer). Finally we treat also the compact case of the complex projective space $\Bbb P^d$ (for $d=1$, the Riemann sphere) and, as an application of our results, use eigenfunction expansions to obtain some new identities involving sums of Legendre ($d=1$) or Jacobi ($d>1$) polynomials and the polylogarithm function. The case of Green's functions of powers of weighted (no longer invariant, but only covariant) Laplacians is also briefly discussed.

Keywords:Invariant Laplacian, Green's functions, dilogarithm, trilogarithm, Legendre and Jacobi polynomials, hyperlogarithms
Categories:35C05, 33E30, 33C45, 34B27, 35J40

© Canadian Mathematical Society, 2014 : https://cms.math.ca/