CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 35B40 ( Asymptotic behavior of solutions )

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2012 (vol 64 pp. 1415)

Selmi, Ridha
Global Well-Posedness and Convergence Results for 3D-Regularized Boussinesq System
Analytical study to the regularization of the Boussinesq system is performed in frequency space using Fourier theory. Existence and uniqueness of weak solution with minimum regularity requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq system to a weak Leray-Hopf solution of the Boussinesq system are established as the regularizing parameter $\alpha$ vanishes. The proofs are done in the frequency space and use energy methods, Arselà-Ascoli compactness theorem and a Friedrichs like approximation scheme.

Keywords:regularizing Boussinesq system, existence and uniqueness of weak solution, convergence results, compactness method in frequency space
Categories:35A05, 76D03, 35B40, 35B10, 86A05, 86A10

2. CJM 2010 (vol 63 pp. 153)

Hambly, B. M.
Asymptotics for Functions Associated with Heat Flow on the Sierpinski Carpet
We establish the asymptotic behaviour of the partition function, the heat content, the integrated eigenvalue counting function, and, for certain points, the on-diagonal heat kernel of generalized Sierpinski carpets. For all these functions the leading term is of the form $x^{\gamma}\phi(\log x)$ for a suitable exponent $\gamma$ and $\phi$ a periodic function. We also discuss similar results for the heat content of affine nested fractals.

Categories:35K05, 28A80, 35B40, 60J65

3. CJM 2005 (vol 57 pp. 1193)

Dungey, Nick
Some Conditions for Decay of Convolution Powers and Heat Kernels on Groups
Let $K$ be a function on a unimodular locally compact group $G$, and denote by $K_n = K*K* \cdots * K$ the $n$-th convolution power of $K$. Assuming that $K$ satisfies certain operator estimates in $L^2(G)$, we give estimates of the norms $\|K_n\|_2$ and $\|K_n\|_\infty$ for large $n$. In contrast to previous methods for estimating $\|K_n\|_\infty$, we do not need to assume that the function $K$ is a probability density or non-negative. Our results also adapt for continuous time semigroups on $G$. Various applications are given, for example, to estimates of the behaviour of heat kernels on Lie groups.

Categories:22E30, 35B40, 43A99

4. CJM 2004 (vol 56 pp. 794)

Michel, Laurent
Semi-Classical Behavior of the Scattering Amplitude for Trapping Perturbations at Fixed Energy
We study the semi-classical behavior as $h\rightarrow 0$ of the scattering amplitude $f(\theta,\omega,\lambda,h)$ associated to a Schr\"odinger operator $P(h)=-\frac 1 2 h^2\Delta +V(x)$ with short-range trapping perturbations. First we realize a spatial localization in the general case and we deduce a bound of the scattering amplitude on the real line. Under an additional assumption on the resonances, we show that if we modify the potential $V(x)$ in a domain lying behind the barrier $\{x:V(x)>\lambda\}$, the scattering amplitude $f(\theta,\omega,\lambda,h)$ changes by a term of order $\O(h^{\infty})$. Under an escape assumption on the classical trajectories incoming with fixed direction $\omega$, we obtain an asymptotic development of $f(\theta,\omega,\lambda,h)$ similar to the one established in thenon-trapping case.

Categories:35P25, 35B34, 35B40

5. CJM 2000 (vol 52 pp. 522)

Gui, Changfeng; Wei, Juncheng
On Multiple Mixed Interior and Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems
We consider the problem \begin{equation*} \begin{cases} \varepsilon^2 \Delta u - u + f(u) = 0, u > 0 & \mbox{in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 & \mbox{on } \partial\Omega, \end{cases} \end{equation*} where $\Omega$ is a bounded smooth domain in $R^N$, $\ve>0$ is a small parameter and $f$ is a superlinear, subcritical nonlinearity. It is known that this equation possesses multiple boundary spike solutions that concentrate, as $\epsilon$ approaches zero, at multiple critical points of the mean curvature function $H(P)$, $P \in \partial \Omega$. It is also proved that this equation has multiple interior spike solutions which concentrate, as $\ep\to 0$, at {\it sphere packing\/} points in $\Om$. In this paper, we prove the existence of solutions with multiple spikes {\it both\/} on the boundary and in the interior. The main difficulty lies in the fact that the boundary spikes and the interior spikes usually have different scales of error estimation. We have to choose a special set of boundary spikes to match the scale of the interior spikes in a variational approach.

Keywords:mixed multiple spikes, nonlinear elliptic equations
Categories:35B40, 35B45, 35J40

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/