CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 35B34 ( Resonances )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2013 (vol 65 pp. 1095)

Sambou, Diomba
Résonances près de seuils d'opérateurs magnétiques de Pauli et de Dirac
Nous considérons les perturbations $H := H_{0} + V$ et $D := D_{0} + V$ des Hamiltoniens libres $H_{0}$ de Pauli et $D_{0}$ de Dirac en dimension 3 avec champ magnétique non constant, $V$ étant un potentiel électrique qui décroît super-exponentiellement dans la direction du champ magnétique. Nous montrons que dans des espaces de Banach appropriés, les résolvantes de $H$ et $D$ définies sur le demi-plan supérieur admettent des prolongements méromorphes. Nous définissons les résonances de $H$ et $D$ comme étant les pôles de ces extensions méromorphes. D'une part, nous étudions la répartition des résonances de $H$ près de l'origine $0$ et d'autre part, celle des résonances de $D$ près de $\pm m$ où $m$ est la masse d'une particule. Dans les deux cas, nous obtenons d'abord des majorations du nombre de résonances dans de petits domaines au voisinage de $0$ et $\pm m$. Sous des hypothèses supplémentaires, nous obtenons des développements asymptotiques du nombre de résonances qui entraînent leur accumulation près des seuils $0$ et $\pm m$. En particulier, pour une perturbation $V$ de signe défini, nous obtenons des informations sur la répartition des valeurs propres de $H$ et $D$ près de $0$ et $\pm m$ respectivement.

Keywords:opérateurs magnétiques de Pauli et de Dirac, résonances
Categories:35B34, 35P25

2. CJM 2004 (vol 56 pp. 794)

Michel, Laurent
Semi-Classical Behavior of the Scattering Amplitude for Trapping Perturbations at Fixed Energy
We study the semi-classical behavior as $h\rightarrow 0$ of the scattering amplitude $f(\theta,\omega,\lambda,h)$ associated to a Schr\"odinger operator $P(h)=-\frac 1 2 h^2\Delta +V(x)$ with short-range trapping perturbations. First we realize a spatial localization in the general case and we deduce a bound of the scattering amplitude on the real line. Under an additional assumption on the resonances, we show that if we modify the potential $V(x)$ in a domain lying behind the barrier $\{x:V(x)>\lambda\}$, the scattering amplitude $f(\theta,\omega,\lambda,h)$ changes by a term of order $\O(h^{\infty})$. Under an escape assumption on the classical trajectories incoming with fixed direction $\omega$, we obtain an asymptotic development of $f(\theta,\omega,\lambda,h)$ similar to the one established in thenon-trapping case.

Categories:35P25, 35B34, 35B40

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/