1. CJM 2003 (vol 55 pp. 3)
 Baake, Michael; Baake, Ellen

An Exactly Solved Model for Mutation, Recombination and Selection
It is well known that rather general mutationrecombination models can be
solved algorithmically (though not in closed form) by means of Haldane
linearization. The price to be paid is that one has to work with a
multiple tensor product of the state space one started from.
Here, we present a relevant subclass of such models, in continuous time,
with independent mutation events at the sites, and crossover events
between them. It admits a closed solution of the corresponding
differential equation on the basis of the original state space, and
also closed expressions for the linkage disequilibria, derived by means
of M\"obius inversion. As an extra benefit, the approach can be extended
to a model with selection of additive type across sites. We also derive
a necessary and sufficient criterion for the mean fitness to be a Lyapunov
function and determine the asymptotic behaviour of the solutions.
Keywords:population genetics, recombination, nonlinear $\ODE$s, measurevalued dynamical systems, MÃ¶bius inversion Categories:92D10, 34L30, 37N30, 06A07, 60J25 

2. CJM 2000 (vol 52 pp. 248)
 Binding, Paul A.; Browne, Patrick J.; Watson, Bruce A.

Spectral Problems for NonLinear SturmLiouville Equations with Eigenparameter Dependent Boundary Conditions
The nonlinear SturmLiouville equation
$$
(py')' + qy = \lambda(1  f)ry \text{ on } [0,1]
$$
is considered subject to the boundary conditions
$$
(a_j\lambda + b_j) y(j) = (c_j\lambda + d_j) (py') (j), \quad j =
0,1.
$$
Here $a_0 = 0 = c_0$ and $p,r > 0$ and $q$ are functions depending
on the independent variable $x$ alone, while $f$ depends on $x$,
$y$ and $y'$. Results are given on existence and location of sets
of $(\lambda,y)$ bifurcating from the linearized eigenvalues, and
for which $y$ has prescribed oscillation count, and on completeness
of the $y$ in an appropriate sense.
Categories:34B24, 34C23, 34L30 
