location:  Publications → journals
Search results

Search: MSC category 34B15 ( Nonlinear boundary value problems )

 Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2006 (vol 58 pp. 449)

Agarwal, Ravi P.; Cao, Daomin; Lü, Haishen; O'Regan, Donal
 Existence and Multiplicity of Positive Solutions for Singular Semipositone $p$-Laplacian Equations Positive solutions are obtained for the boundary value problem $\begin{cases} -( | u'| ^{p-2}u')' =\lambda f( t,u),\;t\in ( 0,1) ,p>1\\ u( 0) =u(1) =0. \end{cases}$ Here $f(t,u) \geq -M,$ ($M$ is a positive constant) for $(t,u) \in [0\mathinner{,}1] \times (0,\infty )$. We will show the existence of two positive solutions by using degree theory together with the upper-lower solution method. Keywords:one dimensional $p$-Laplacian, positive solution, degree theory, upper and lower solutionCategory:34B15

2. CJM 1997 (vol 49 pp. 1066)

Shibata, Tetsutaro
 Multiparameter Variational Eigenvalue Problems with Indefinite Nonlinearity We consider the multiparameter nonlinear Sturm-Liouville problem $$\displaylines{ u''(x) - \sum_{k=1}^m\mu_k u(x)^{p_k} + \sum_{k=m+1}^n \mu_ku(x)^{p_k} = \lambda u(x)^q, \quad x \in I := (-1,1), \cr u(x) > 0, \quad x \in I, \cr u(-1) = u(1) = 0,\cr}$$ where $\mu = (\mu_1, \mu_2, \ldots, \mu_m, \mu_{m+1}, \ldots \mu_n) \in \bar{R}_+^m \times R_+^{n-m} \bigl(R_+ := (0, \infty)\bigr)$ and $\lambda \in R$ are parameters. We assume that $$1 \le q \le p_1 < p_2 < \cdots < p_n < 2q + 3.$$ We shall establish an asymptotic formula of variational eigenvalue $\lambda = \lambda(\mu,\alpha)$ obtained by using Ljusternik-Schnirelman theory on general level set $N_{\mu,\alpha} (\alpha > 0:$ parameter of level set). Furthermore, we shall give the optimal condition of $\{(\mu, \alpha)\}$, under which $\mu_i (m + 1 \le i \le n: \hbox{\rm fixed})$ dominates the asymptotic behavior of $\lambda(\mu,\alpha)$. Categories:34B15, 34B25
 top of page | contact us | privacy | site map |