Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 34 ( Ordinary differential equations )

  Expand all        Collapse all Results 1 - 25 of 30

1. CJM Online first

Hakl, Robert; Zamora, Manuel
Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere
We study a second-order ordinary differential equation coming from the Kepler problem on $\mathbb{S}^2$. The forcing term under consideration is a piecewise constant with singular nonlinearity which changes sign. We establish necessary and sufficient conditions to the existence and multiplicity of $T$-periodic solutions.

Keywords:singular differential equation, indefinite singularity, periodic solution, Kepler problem on $\mathbb{S}^1$, degree theory
Categories:34B16, 34C25, 70F05, 70F15

2. CJM Online first

Ovchinnikov, Alexey; Wibmer, Michael
Tannakian categories with semigroup actions
Ostrowski's theorem implies that $\log(x),\log(x+1),\dots$ are algebraically independent over $\mathbb{C}(x)$. More generally, for a linear differential or difference equation, it is an important problem to find all algebraic dependencies among a non-zero solution $y$ and particular transformations of $y$, such as derivatives of $y$ with respect to parameters, shifts of the arguments, rescaling, etc. In the present paper, we develop a theory of Tannakian categories with semigroup actions, which will be used to attack such questions in full generality, as each linear differential equation gives rise to a Tannakian category. Deligne studied actions of braid groups on categories and obtained a finite collection of axioms that characterizes such actions to apply it to various geometric constructions. In this paper, we find a finite set of axioms that characterizes actions of semigroups that are finite free products of semigroups of the form $\mathbb{N}^n\times \mathbb{Z}/{n_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/{n_r}\mathbb{Z}$ on Tannakian categories. This is the class of semigroups that appear in many applications.

Keywords:semigroup actions on categories, Tannakian categories, difference algebraic groups, differential and difference equations with parameters
Categories:18D10, 12H10, 20G05, 33C05, 33C80, 34K06

3. CJM 2015 (vol 67 pp. 1247)

Barros, Carlos Braga; Rocha, Victor; Souza, Josiney
Lyapunov Stability and Attraction Under Equivariant Maps
Let $M$ and $N$ be admissible Hausdorff topological spaces endowed with admissible families of open coverings. Assume that $\mathcal{S}$ is a semigroup acting on both $M$ and $N$. In this paper we study the behavior of limit sets, prolongations, prolongational limit sets, attracting sets, attractors and Lyapunov stable sets (all concepts defined for the action of the semigroup $\mathcal{S}$) under equivariant maps and semiconjugations from $M$ to $N$.

Keywords:Lyapunov stability, semigroup actions, generalized flows, equivariant maps, admissible topological spaces
Categories:37B25, 37C75, 34C27, 34D05

4. CJM 2015 (vol 67 pp. 1270)

Carcamo, Cristian; Vidal, Claudio
Stability of Equilibrium Solutions in Planar Hamiltonian Difference Systems
In this paper, we study the stability in the Lyapunov sense of the equilibrium solutions of discrete or difference Hamiltonian systems in the plane. First, we perform a detailed study of linear Hamiltonian systems as a function of the parameters, in particular we analyze the regular and the degenerate cases. Next, we give a detailed study of the normal form associated with the linear Hamiltonian system. At the same time we obtain the conditions under which we can get stability (in linear approximation) of the equilibrium solution, classifying all the possible phase diagrams as a function of the parameters. After that, we study the stability of the equilibrium solutions of the first order difference system in the plane associated to mechanical Hamiltonian system and Hamiltonian system defined by cubic polynomials. Finally, important differences with the continuous case are pointed out.

Keywords:difference equations, Hamiltonian systems, stability in the Lyapunov sense
Categories:34D20, 34E10

5. CJM 2014 (vol 67 pp. 1065)

Ducrot, Arnaud; Magal, Pierre; Seydi, Ousmane
A Finite-time Condition for Exponential Trichotomy in Infinite Dynamical Systems
In this article we study exponential trichotomy for infinite dimensional discrete time dynamical systems. The goal of this article is to prove that finite time exponential trichotomy conditions allow to derive exponential trichotomy for any times. We present an application to the case of pseudo orbits in some neighborhood of a normally hyperbolic set.

Keywords:exponential trichotomy, exponential dichotomy, discrete time dynamical systems, difference equations
Categories:34D09, 34A10

6. CJM 2013 (vol 67 pp. 450)

Santoprete, Manuele; Scheurle, Jürgen; Walcher, Sebastian
Motion in a Symmetric Potential on the Hyperbolic Plane
We study the motion of a particle in the hyperbolic plane (embedded in Minkowski space), under the action of a potential that depends only on one variable. This problem is the analogous to the spherical pendulum in a unidirectional force field. However, for the discussion of the hyperbolic plane one has to distinguish three inequivalent cases, depending on the direction of the force field. Symmetry reduction, with respect to groups that are not necessarily compact or even reductive, is carried out by way of Poisson varieties and Hilbert maps. For each case the dynamics is discussed, with special attention to linear potentials.

Keywords:Hamiltonian systems with symmetry, symmetries, non-compact symmetry groups, singular reduction
Categories:37J15, 70H33, 70F99, 37C80, 34C14, , 20G20

7. CJM 2012 (vol 65 pp. 808)

Grandjean, Vincent
On Hessian Limit Directions along Gradient Trajectories
Given a non-oscillating gradient trajectory $|\gamma|$ of a real analytic function $f$, we show that the limit $\nu$ of the secants at the limit point $\mathbf{0}$ of $|\gamma|$ along the trajectory $|\gamma|$ is an eigen-vector of the limit of the direction of the Hessian matrix $\operatorname{Hess} (f)$ at $\mathbf{0}$ along $|\gamma|$. The same holds true at infinity if the function is globally sub-analytic. We also deduce some interesting estimates along the trajectory. Away from the ends of the ambient space, this property is of metric nature and still holds in a general Riemannian analytic setting.

Keywords:gradient trajectories, non-oscillation, limit of Hessian directions, limit of secants, trajectories at infinity
Categories:34A26, 34C08, 32Bxx, 32Sxx

8. CJM 2011 (vol 64 pp. 961)

Borwein, Jonathan M.; Straub, Armin; Wan, James; Zudilin, Wadim
Densities of Short Uniform Random Walks
We study the densities of uniform random walks in the plane. A special focus is on the case of short walks with three or four steps and less completely those with five steps. As one of the main results, we obtain a hypergeometric representation of the density for four steps, which complements the classical elliptic representation in the case of three steps. It appears unrealistic to expect similar results for more than five steps. New results are also presented concerning the moments of uniform random walks and, in particular, their derivatives. Relations with Mahler measures are discussed.

Keywords:random walks, hypergeometric functions, Mahler measure
Categories:60G50, 33C20, 34M25, 44A10

9. CJM 2010 (vol 62 pp. 261)

Chiang, Yik-Man; Ismail, Mourad E. H.
Erratum to: On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials
No abstract.

Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine Problem
Categories:34M10, 33C15, 33C47

10. CJM 2009 (vol 62 pp. 74)

Ducrot, Arnaud; Liu, Zhihua; Magal, Pierre
Projectors on the Generalized Eigenspaces for Neutral Functional Differential Equations in $L^{p}$ Spaces
We present the explicit formulas for the projectors on the generalized eigenspaces associated with some eigenvalues for linear neutral functional differential equations (NFDE) in $L^{p}$ spaces by using integrated semigroup theory. The analysis is based on the main result established elsewhere by the authors and results by Magal and Ruan on non-densely defined Cauchy problem. We formulate the NFDE as a non-densely defined Cauchy problem and obtain some spectral properties from which we then derive explicit formulas for the projectors on the generalized eigenspaces associated with some eigenvalues. Such explicit formulas are important in studying bifurcations in some semi-linear problems.

Keywords:neutral functional differential equations, semi-linear problem, integrated semigroup, spectrum, projectors
Categories:34K05, 35K57, 47A56, 47H20

11. CJM 2007 (vol 59 pp. 393)

Servat, E.
Le splitting pour l'opérateur de Klein--Gordon: une approche heuristique et numérique
Dans cet article on \'etudie la diff\'erence entre les deux premi\`eres valeurs propres, le splitting, d'un op\'erateur de Klein--Gordon semi-classique unidimensionnel, dans le cas d'un potentiel sym\'etrique pr\'esentant un double puits. Dans le cas d'une petite barri\`ere de potentiel, B. Helffer et B. Parisse ont obtenu des r\'esultats analogues \`a ceux existant pour l'op\'erateur de Schr\"odinger. Dans le cas d'une grande barri\`ere de potentiel, on obtient ici des estimations des tranform\'ees de Fourier des fonctions propres qui conduisent \`a une conjecture du splitting. Des calculs num\'eriques viennent appuyer cette conjecture.

Categories:35P05, 34L16, 34E05, 47A10, 47A70

12. CJM 2007 (vol 59 pp. 127)

Lamzouri, Youness
Smooth Values of the Iterates of the Euler Phi-Function
Let $\phi(n)$ be the Euler phi-function, define $\phi_0(n) = n$ and $\phi_{k+1}(n)=\phi(\phi_{k}(n))$ for all $k\geq 0$. We will determine an asymptotic formula for the set of integers $n$ less than $x$ for which $\phi_k(n)$ is $y$-smooth, conditionally on a weak form of the Elliott--Halberstam conjecture.

Categories:11N37, 11B37, 34K05, 45J05

13. CJM 2006 (vol 58 pp. 726)

Chiang, Yik-Man; Ismail, Mourad E. H.
On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials
We show that the value distribution (complex oscillation) of solutions of certain periodic second order ordinary differential equations studied by Bank, Laine and Langley is closely related to confluent hypergeometric functions, Bessel functions and Bessel polynomials. As a result, we give a complete characterization of the zero-distribution in the sense of Nevanlinna theory of the solutions for two classes of the ODEs. Our approach uses special functions and their asymptotics. New results concerning finiteness of the number of zeros (finite-zeros) problem of Bessel and Coulomb wave functions with respect to the parameters are also obtained as a consequence. We demonstrate that the problem for the remaining class of ODEs not covered by the above ``special function approach" can be described by a classical Heine problem for differential equations that admit polynomial solutions.

Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine Proble
Categories:34M10, 33C15, 33C47

14. CJM 2006 (vol 58 pp. 449)

Agarwal, Ravi P.; Cao, Daomin; Lü, Haishen; O'Regan, Donal
Existence and Multiplicity of Positive Solutions for Singular Semipositone $p$-Laplacian Equations
Positive solutions are obtained for the boundary value problem \[\begin{cases} -( | u'| ^{p-2}u')' =\lambda f( t,u),\;t\in ( 0,1) ,p>1\\ u( 0) =u(1) =0. \end{cases} \] Here $f(t,u) \geq -M,$ ($M$ is a positive constant) for $(t,u) \in [0\mathinner{,}1] \times (0,\infty )$. We will show the existence of two positive solutions by using degree theory together with the upper-lower solution method.

Keywords:one dimensional $p$-Laplacian, positive solution, degree theory, upper and lower solution

15. CJM 2004 (vol 56 pp. 310)

Llibre, Jaume; Schlomiuk, Dana
The Geometry of Quadratic Differential Systems with a Weak Focus of Third Order
In this article we determine the global geometry of the planar quadratic differential systems with a weak focus of third order. This class plays a significant role in the context of Hilbert's 16-th problem. Indeed, all examples of quadratic differential systems with at least four limit cycles, were obtained by perturbing a system in this family. We use the algebro-geometric concepts of divisor and zero-cycle to encode global properties of the systems and to give structure to this class. We give a theorem of topological classification of such systems in terms of integer-valued affine invariants. According to the possible values taken by them in this family we obtain a total of $18$ topologically distinct phase portraits. We show that inside the class of all quadratic systems with the topology of the coefficients, there exists a neighborhood of the family of quadratic systems with a weak focus of third order and which may have graphics but no polycycle in the sense of \cite{DRR} and no limit cycle, such that any quadratic system in this neighborhood has at most four limit cycles.

Categories:34C40, 51F14, 14D05, 14D25

16. CJM 2003 (vol 55 pp. 724)

Cao, Xifang; Kong, Qingkai; Wu, Hongyou; Zettl, Anton
Sturm-Liouville Problems Whose Leading Coefficient Function Changes Sign
For a given Sturm-Liouville equation whose leading coefficient function changes sign, we establish inequalities among the eigenvalues for any coupled self-adjoint boundary condition and those for two corresponding separated self-adjoint boundary conditions. By a recent result of Binding and Volkmer, the eigenvalues (unbounded from both below and above) for a separated self-adjoint boundary condition can be numbered in terms of the Pr\"ufer angle; and our inequalities can then be used to index the eigenvalues for any coupled self-adjoint boundary condition. Under this indexing scheme, we determine the discontinuities of each eigenvalue as a function on the space of such Sturm-Liouville problems, and its range as a function on the space of self-adjoint boundary conditions. We also relate this indexing scheme to the number of zeros of eigenfunctions. In addition, we characterize the discontinuities of each eigenvalue under a different indexing scheme.

Categories:34B24, 34C10, 34L05, 34L15, 34L20

17. CJM 2003 (vol 55 pp. 3)

Baake, Michael; Baake, Ellen
An Exactly Solved Model for Mutation, Recombination and Selection
It is well known that rather general mutation-recombination models can be solved algorithmically (though not in closed form) by means of Haldane linearization. The price to be paid is that one has to work with a multiple tensor product of the state space one started from. Here, we present a relevant subclass of such models, in continuous time, with independent mutation events at the sites, and crossover events between them. It admits a closed solution of the corresponding differential equation on the basis of the original state space, and also closed expressions for the linkage disequilibria, derived by means of M\"obius inversion. As an extra benefit, the approach can be extended to a model with selection of additive type across sites. We also derive a necessary and sufficient criterion for the mean fitness to be a Lyapunov function and determine the asymptotic behaviour of the solutions.

Keywords:population genetics, recombination, nonlinear $\ODE$s, measure-valued dynamical systems, Möbius inversion
Categories:92D10, 34L30, 37N30, 06A07, 60J25

18. CJM 2002 (vol 54 pp. 1187)

Cobo, Milton; Gutierrez, Carlos; Llibre, Jaume
On the Injectivity of $C^1$ Maps of the Real Plane
Let $X\colon\mathbb{R}^2\to\mathbb{R}^2$ be a $C^1$ map. Denote by $\Spec(X)$ the set of (complex) eigenvalues of $\DX_p$ when $p$ varies in $\mathbb{R}^2$. If there exists $\epsilon >0$ such that $\Spec(X)\cap(-\epsilon,\epsilon)=\emptyset$, then $X$ is injective. Some applications of this result to the real Keller Jacobian conjecture are discussed.

Categories:34D05, 54H20, 58F10, 58F21

19. CJM 2002 (vol 54 pp. 1142)

Binding, Paul; Ćurgus, Branko
Form Domains and Eigenfunction Expansions for Differential Equations with Eigenparameter Dependent Boundary Conditions
Form domains are characterized for regular $2n$-th order differential equations subject to general self-adjoint boundary conditions depending affinely on the eigenparameter. Corresponding modes of convergence for eigenfunction expansions are studied, including uniform convergence of the first $n-1$ derivatives.

Categories:47E05, 34B09, 47B50, 47B25, 34L10

20. CJM 2002 (vol 54 pp. 897)

Fortuny Ayuso, Pedro
The Valuative Theory of Foliations
This paper gives a characterization of valuations that follow the singular infinitely near points of plane vector fields, using the notion of L'H\^opital valuation, which generalizes a well known classical condition. With that tool, we give a valuative description of vector fields with infinite solutions, singularities with rational quotient of eigenvalues in its linear part, and polynomial vector fields with transcendental solutions, among other results.

Categories:12J20, 13F30, 16W60, 37F75, 34M25

21. CJM 2002 (vol 54 pp. 1038)

Gavrilov, Lubomir; Iliev, Iliya D.
Bifurcations of Limit Cycles From Infinity in Quadratic Systems
We investigate the bifurcation of limit cycles in one-parameter unfoldings of quadractic differential systems in the plane having a degenerate critical point at infinity. It is shown that there are three types of quadratic systems possessing an elliptic critical point which bifurcates from infinity together with eventual limit cycles around it. We establish that these limit cycles can be studied by performing a degenerate transformation which brings the system to a small perturbation of certain well-known reversible systems having a center. The corresponding displacement function is then expanded in a Puiseux series with respect to the small parameter and its coefficients are expressed in terms of Abelian integrals. Finally, we investigate in more detail four of the cases, among them the elliptic case (Bogdanov-Takens system) and the isochronous center $\mathcal{S}_3$. We show that in each of these cases the corresponding vector space of bifurcation functions has the Chebishev property: the number of the zeros of each function is less than the dimension of the vector space. To prove this we construct the bifurcation diagram of zeros of certain Abelian integrals in a complex domain.

Categories:34C07, 34C05, 34C10

22. CJM 2002 (vol 54 pp. 648)

Yuan, Wenjun; Li, Yezhou
Rational Solutions of Painlevé Equations
Consider the sixth Painlev\'e equation~(P$_6$) below where $\alpha$, $\beta$, $\gamma$ and $\delta$ are complex parameters. We prove the necessary and sufficient conditions for the existence of rational solutions of equation~(P$_6$) in term of special relations among the parameters. The number of distinct rational solutions in each case is exactly one or two or infinite. And each of them may be generated by means of transformation group found by Okamoto [7] and B\"acklund transformations found by Fokas and Yortsos [4]. A list of rational solutions is included in the appendix. For the sake of completeness, we collected all the corresponding results of other five Painlev\'e equations (P$_1$)--(P$_5$) below, which have been investigated by many authors [1]--[7].

Keywords:Painlevé differential equation, rational function, Bäcklund transformation
Categories:30D35, 34A20

23. CJM 2000 (vol 52 pp. 248)

Binding, Paul A.; Browne, Patrick J.; Watson, Bruce A.
Spectral Problems for Non-Linear Sturm-Liouville Equations with Eigenparameter Dependent Boundary Conditions
The nonlinear Sturm-Liouville equation $$ -(py')' + qy = \lambda(1 - f)ry \text{ on } [0,1] $$ is considered subject to the boundary conditions $$ (a_j\lambda + b_j) y(j) = (c_j\lambda + d_j) (py') (j), \quad j = 0,1. $$ Here $a_0 = 0 = c_0$ and $p,r > 0$ and $q$ are functions depending on the independent variable $x$ alone, while $f$ depends on $x$, $y$ and $y'$. Results are given on existence and location of sets of $(\lambda,y)$ bifurcating from the linearized eigenvalues, and for which $y$ has prescribed oscillation count, and on completeness of the $y$ in an appropriate sense.

Categories:34B24, 34C23, 34L30

24. CJM 1998 (vol 50 pp. 497)

Bolle, Philippe
Morse index of approximating periodic solutions for the billiard problem. Application to existence results
This paper deals with periodic solutions for the billiard problem in a bounded open set of $\hbox{\Bbbvii R}^N$ which are limits of regular solutions of Lagrangian systems with a potential well. We give a precise link between the Morse index of approximate solutions (regarded as critical points of Lagrangian functionals) and the properties of the bounce trajectory to which they converge.

Categories:34C25, 58E50

25. CJM 1998 (vol 50 pp. 412)

McIntosh, Richard J.
Asymptotic transformations of $q$-series
For the $q$-series $\sum_{n=0}^\infty a^nq^{bn^2+cn}/(q)_n$ we construct a companion $q$-series such that the asymptotic expansions of their logarithms as $q\to 1^{\scriptscriptstyle -}$ differ only in the dominant few terms. The asymptotic expansion of their quotient then has a simple closed form; this gives rise to a new $q$-hypergeometric identity. We give an asymptotic expansion of a general class of $q$-series containing some of Ramanujan's mock theta functions and Selberg's identities.

Categories:11B65, 33D10, 34E05, 41A60
   1 2    

© Canadian Mathematical Society, 2017 :