CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 33C80 ( Connections with groups and algebras, and related topics )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

Ovchinnikov, Alexey; Wibmer, Michael
Tannakian categories with semigroup actions
Ostrowski's theorem implies that $\log(x),\log(x+1),\dots$ are algebraically independent over $\mathbb{C}(x)$. More generally, for a linear differential or difference equation, it is an important problem to find all algebraic dependencies among a non-zero solution $y$ and particular transformations of $y$, such as derivatives of $y$ with respect to parameters, shifts of the arguments, rescaling, etc. In the present paper, we develop a theory of Tannakian categories with semigroup actions, which will be used to attack such questions in full generality, as each linear differential equation gives rise to a Tannakian category. Deligne studied actions of braid groups on categories and obtained a finite collection of axioms that characterizes such actions to apply it to various geometric constructions. In this paper, we find a finite set of axioms that characterizes actions of semigroups that are finite free products of semigroups of the form $\mathbb{N}^n\times \mathbb{Z}/{n_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/{n_r}\mathbb{Z}$ on Tannakian categories. This is the class of semigroups that appear in many applications.

Keywords:semigroup actions on categories, Tannakian categories, difference algebraic groups, differential and difference equations with parameters
Categories:18D10, 12H10, 20G05, 33C05, 33C80, 34K06

2. CJM 2012 (vol 64 pp. 721)

Achab, Dehbia; Faraut, Jacques
Analysis of the Brylinski-Kostant Model for Spherical Minimal Representations
We revisit with another view point the construction by R. Brylinski and B. Kostant of minimal representations of simple Lie groups. We start from a pair $(V,Q)$, where $V$ is a complex vector space and $Q$ a homogeneous polynomial of degree 4 on $V$. The manifold $\Xi $ is an orbit of a covering of ${\rm Conf}(V,Q)$, the conformal group of the pair $(V,Q)$, in a finite dimensional representation space. By a generalized Kantor-Koecher-Tits construction we obtain a complex simple Lie algebra $\mathfrak g$, and furthermore a real form ${\mathfrak g}_{\mathbb R}$. The connected and simply connected Lie group $G_{\mathbb R}$ with ${\rm Lie}(G_{\mathbb R})={\mathfrak g}_{\mathbb R}$ acts unitarily on a Hilbert space of holomorphic functions defined on the manifold $\Xi $.

Keywords:minimal representation, Kantor-Koecher-Tits construction, Jordan algebra, Bernstein identity, Meijer $G$-function
Categories:17C36, 22E46, 32M15, 33C80

© Canadian Mathematical Society, 2016 : https://cms.math.ca/