Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 33C55 ( Spherical harmonics )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2010 (vol 62 pp. 1276)

El Wassouli, Fouzia
A Generalized Poisson Transform of an $L^{p}$-Function over the Shilov Boundary of the $n$-Dimensional Lie Ball
Let $\mathcal{D}$ be the $n$-dimensional Lie ball and let $\mathbf{B}(S)$ be the space of hyperfunctions on the Shilov boundary $S$ of $\mathcal{D}$. The aim of this paper is to give a necessary and sufficient condition on the generalized Poisson transform $P_{l,\lambda}f$ of an element $f$ in the space $\mathbf{B}(S)$ for $f$ to be in $ L^{p}(S)$, $1 > p > \infty.$ Namely, if $F$ is the Poisson transform of some $f\in \mathbf{B}(S)$ (i.e., $F=P_{l,\lambda}f$), then for any $l\in \mathbb{Z}$ and $\lambda\in \mathbb{C}$ such that $\mathcal{R}e[i\lambda] > \frac{n}{2}-1$, we show that $f\in L^{p}(S)$ if and only if $f$ satisfies the growth condition $$ \|F\|_{\lambda,p}=\sup_{0\leq r < 1}(1-r^{2})^{\mathcal{R}e[i\lambda]-\frac{n}{2}+l}\Big[\int_{S}|F(ru)|^{p}du \Big]^{\frac{1}{p}} < +\infty. $$

Keywords:Lie ball, Shilov boundary, Fatou's theorem, hyperfuctions, parabolic subgroup, homogeneous line bundle
Categories:32A45, 30E20, 33C67, 33C60, 33C55, 32A25, 33C75, 11K70

2. CJM 2003 (vol 55 pp. 1134)

Casarino, Valentina
Norms of Complex Harmonic Projection Operators
In this paper we estimate the $(L^p-L^2)$-norm of the complex harmonic projectors $\pi_{\ell\ell'}$, $1\le p\le 2$, uniformly with respect to the indexes $\ell,\ell'$. We provide sharp estimates both for the projectors $\pi_{\ell\ell'}$, when $\ell,\ell'$ belong to a proper angular sector in $\mathbb{N} \times \mathbb{N}$, and for the projectors $\pi_{\ell 0}$ and $\pi_{0 \ell}$. The proof is based on an extension of a complex interpolation argument by C.~Sogge. In the appendix, we prove in a direct way the uniform boundedness of a particular zonal kernel in the $L^1$ norm on the unit sphere of $\mathbb{R}^{2n}$.

Categories:43A85, 33C55, 42B15

© Canadian Mathematical Society, 2014 :