Search: MSC category 33C45
( Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions] )
1. CJM 2002 (vol 54 pp. 709)
 Ismail, Mourad E. H.; Stanton, Dennis

$q$Integral and Moment Representations for $q$Orthogonal Polynomials
We develop a method for deriving integral representations of certain
orthogonal polynomials as moments. These moment representations are
applied to find linear and multilinear generating functions for
$q$orthogonal polynomials. As a byproduct we establish new
transformation formulas for combinations of basic hypergeometric
functions, including a new representation of the $q$exponential
function $\mathcal{E}_q$.
Keywords:$q$integral, $q$orthogonal polynomials, associated polynomials, $q$difference equations, generating functions, AlSalamChihara polynomials, continuous $q$ultraspherical polynomials Categories:33D45, 33D20, 33C45, 30E05 

2. CJM 2002 (vol 54 pp. 239)
 Cartwright, Donald I.; Steger, Tim

Elementary Symmetric Polynomials in Numbers of Modulus $1$
We describe the set of numbers $\sigma_k(z_1,\ldots,z_{n+1})$, where
$z_1,\ldots,z_{n+1}$ are complex numbers of modulus $1$ for which
$z_1z_2\cdots z_{n+1}=1$, and $\sigma_k$ denotes the $k$th
elementary symmetric polynomial. Consequently, we give sharp
constraints on the coefficients of a complex polynomial all of whose
roots are of the same modulus. Another application is the calculation
of the spectrum of certain adjacency operators arising naturally
on a building of type ${\tilde A}_n$.
Categories:05E05, 33C45, 30C15, 51E24 

3. CJM 1998 (vol 50 pp. 1236)
4. CJM 1998 (vol 50 pp. 193)
 Xu, Yuan

Intertwining operator and $h$harmonics associated with reflection groups
We study the intertwining operator and $h$harmonics in
Dunkl's theory on $h$harmonics associated with reflection groups. Based
on a biorthogonality between the ordinary harmonics and the action of the
intertwining operator $V$ on the harmonics, the main result provides a
method to compute the action of the intertwining operator $V$ on polynomials
and to construct an orthonormal basis for the space of $h$harmonics.
Keywords:$h$harmonics, intertwining operator, reflection group Categories:33C50, 33C45 

5. CJM 1998 (vol 50 pp. 40)
 Engliš, Miroslav; Peetre, Jaak

Green's functions for powers of the invariant Laplacian
The aim of the present paper is the computation of Green's functions
for the powers $\DDelta^m$ of the invariant Laplace operator on rankone
Hermitian symmetric spaces. Starting with the noncompact case, the
unit ball in $\CC^d$, we obtain a complete result for $m=1,2$ in
all dimensions. For $m\ge3$ the formulas grow quite complicated so
we restrict ourselves to the case of the unit disc ($d=1$) where
we develop a method, possibly applicable also in other situations,
for reducing the number of integrations by half, and use it to give
a description of the boundary behaviour of these Green functions
and to obtain their (multivalued) analytic continuation to the
entire complex plane. Next we discuss the type of special functions
that turn up (hyperlogarithms of Kummer). Finally we treat also
the compact case of the complex projective space $\Bbb P^d$ (for
$d=1$, the Riemann sphere) and, as an application of our results,
use eigenfunction expansions to obtain some new identities involving
sums of Legendre ($d=1$) or Jacobi ($d>1$) polynomials and the
polylogarithm function. The case of Green's functions of powers of
weighted (no longer invariant, but only covariant) Laplacians is
also briefly discussed.
Keywords:Invariant Laplacian, Green's functions, dilogarithm, trilogarithm, Legendre and Jacobi polynomials, hyperlogarithms Categories:35C05, 33E30, 33C45, 34B27, 35J40 

6. CJM 1997 (vol 49 pp. 520)
 Ismail, Mourad E. H.; Stanton, Dennis

Classical orthogonal polynomials as moments
We show that the Meixner, Pollaczek, MeixnerPollaczek, the continuous
$q$ultraspherical polynomials and AlSalamChihara polynomials, in
certain normalization, are moments of probability measures. We use
this fact to derive bilinear and multilinear generating functions for
some of these polynomials. We also comment on the corresponding formulas
for the Charlier, Hermite and Laguerre polynomials.
Keywords:Classical orthogonal polynomials, \ACP, continuous, $q$ultraspherical polynomials, generating functions, multilinear, generating functions, transformation formulas, umbral calculus Categories:33D45, 33D20, 33C45, 30E05 

7. CJM 1997 (vol 49 pp. 175)
 Xu, Yuan

Orthogonal Polynomials for a Family of Product Weight Functions on the Spheres
Based on the theory of spherical harmonics for measures invariant
under a finite reflection group developed by Dunkl recently, we study
orthogonal polynomials with respect to the weight functions
$x_1^{\alpha_1}\cdots x_d^{\alpha_d}$ on the unit sphere $S^{d1}$ in
$\RR^d$. The results include explicit formulae for orthonormal polynomials,
reproducing and Poisson kernel, as well as intertwining operator.
Keywords:Orthogonal polynomials in several variables, sphere, hharmonics Categories:33C50, 33C45, 42C10 
