1. CJM 2016 (vol 69 pp. 220)
 Zheng, Tao

The ChernRicci Flow on OeljeklausToma Manifolds
We study the ChernRicci flow, an evolution equation of Hermitian
metrics, on a family of OeljeklausToma (OT) manifolds which
are nonKÃ¤hler compact complex manifolds with negative Kodaira
dimension. We prove that, after an initial conformal change,
the flow converges, in the
GromovHausdorff sense, to a torus with a flat Riemannian metric
determined by the OTmanifolds themselves.
Keywords:ChernRicci flow, OeljeklausToma manifold, Calabitype estimate, GromovHausdorff convergence Categories:53C44, 53C55, 32W20, 32J18, 32M17 

2. CJM 2013 (vol 66 pp. 1413)
 Zhang, Xi; Zhang, Xiangwen

Generalized KÃ¤hlerEinstein Metrics and Energy Functionals
In this paper, we consider a generalized
KÃ¤hlerEinstein equation on KÃ¤hler manifold $M$. Using the
twisted $\mathcal K$energy introduced by Song and Tian, we show
that the existence of generalized KÃ¤hlerEinstein metrics with
semipositive twisting $(1, 1)$form $\theta $ is also closely
related to the properness of the twisted $\mathcal K$energy
functional. Under the condition that the twisting form $\theta $ is
strictly positive at a point or $M$ admits no nontrivial Hamiltonian
holomorphic vector field, we prove that the existence of generalized
KÃ¤hlerEinstein metric implies a MoserTrudinger type inequality.
Keywords:complex MongeAmpÃ¨re equation, energy functional, generalized KÃ¤hlerEinstein metric, MoserTrudinger type inequality Categories:53C55, 32W20 

3. CJM 2009 (vol 62 pp. 218)
 Xing, Yang

The General Definition of the Complex MongeAmpÃ¨re Operator on Compact KÃ¤hler Manifolds
We introduce a wide subclass ${\mathcal F}(X,\omega)$ of
quasiplurisubharmonic functions in a compact KÃ¤hler manifold, on
which the complex MongeAmpÃ¨re operator is well defined and the
convergence theorem is valid. We also prove that ${\mathcal F}(X,\omega)$
is a convex cone and includes all quasiplurisubharmonic functions
that are in the Cegrell class.
Keywords:complex MongeAmpÃ¨re operator, compact KÃ¤hler manifold Categories:32W20, 32Q15 
