CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 32A10 ( Holomorphic functions )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2009 (vol 62 pp. 3)

Anchouche, Boudjemâa
On the Asymptotic Behavior of Complete Kähler Metrics of Positive Ricci Curvature
Let $( X,g) $ be a complete noncompact Kähler manifold, of dimension $n\geq2,$ with positive Ricci curvature and of standard type (see the definition below). N. Mok proved that $X$ can be compactified, \emph{i.e.,} $X$ is biholomorphic to a quasi-projective variety$.$ The aim of this paper is to prove that the $L^{2}$ holomorphic sections of the line bundle $K_{X}^{-q}$ and the volume form of the metric $g$ have no essential singularities near the divisor at infinity. As a consequence we obtain a comparison between the volume forms of the Kähler metric $g$ and of the Fubini--Study metric induced on $X$. In the case of $\dim_{\mathbb{C} }X=2,$ we establish a relation between the number of components of the divisor $D$ and the dimension of the groups $H^{i}( \overline{X}, \Omega_{\overline{X}}^{1}( \log D) )$.

Categories:53C55, 32A10

2. CJM 2000 (vol 52 pp. 982)

Lárusson, Finnur
Holomorphic Functions of Slow Growth on Nested Covering Spaces of Compact Manifolds
Let $Y$ be an infinite covering space of a projective manifold $M$ in $\P^N$ of dimension $n\geq 2$. Let $C$ be the intersection with $M$ of at most $n-1$ generic hypersurfaces of degree $d$ in $\mathbb{P}^N$. The preimage $X$ of $C$ in $Y$ is a connected submanifold. Let $\phi$ be the smoothed distance from a fixed point in $Y$ in a metric pulled up from $M$. Let $\O_\phi(X)$ be the Hilbert space of holomorphic functions $f$ on $X$ such that $f^2 e^{-\phi}$ is integrable on $X$, and define $\O_\phi(Y)$ similarly. Our main result is that (under more general hypotheses than described here) the restriction $\O_\phi(Y) \to \O_\phi(X)$ is an isomorphism for $d$ large enough. This yields new examples of Riemann surfaces and domains of holomorphy in $\C^n$ with corona. We consider the important special case when $Y$ is the unit ball $\B$ in $\C^n$, and show that for $d$ large enough, every bounded holomorphic function on $X$ extends to a unique function in the intersection of all the nontrivial weighted Bergman spaces on $\B$. Finally, assuming that the covering group is arithmetic, we establish three dichotomies concerning the extension of bounded holomorphic and harmonic functions from $X$ to $\B$.

Categories:32A10, 14E20, 30F99, 32M15

3. CJM 2000 (vol 52 pp. 3)

Aizenberg, Lev; Vidras, Alekos
On Small Complete Sets of Functions
Using Local Residues and the Duality Principle a multidimensional variation of the completeness theorems by T.~Carleman and A.~F.~Leontiev is proven for the space of holomorphic functions defined on a suitable open strip $T_{\alpha}\subset {\bf C}^2$. The completeness theorem is a direct consequence of the Cauchy Residue Theorem in a torus. With suitable modifications the same result holds in ${\bf C}^n$.

Categories:32A10, 42C30

© Canadian Mathematical Society, 2014 : https://cms.math.ca/