1. CJM 2010 (vol 62 pp. 961)
 Aleman, Alexandru; Duren, Peter; Martín, María J.; Vukotić, Dragan

Multiplicative Isometries and Isometric ZeroDivisors
For some Banach spaces of analytic functions in the unit disk
(weighted Bergman spaces, Bloch space, Dirichlettype spaces), the
isometric pointwise multipliers are found to be unimodular constants.
As a consequence, it is shown that none of those spaces have isometric
zerodivisors. Isometric coefficient multipliers are also
investigated.
Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlettype spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zerodivisors Categories:30H05, 46E15 

2. CJM 2009 (vol 62 pp. 646)
 Rupp, R.; Sasane, A.

Reducibility in A_{R}(K), C_{R}(K), and A(K)
Let $K$ denote a compact real symmetric subset of $\mathbb{C}$ and let
$A_{\mathbb R}(K)$ denote the real Banach algebra of all real
symmetric continuous functions on $K$ that are analytic in the
interior $K^\circ$ of $K$, endowed with the supremum norm. We
characterize all unimodular pairs $(f,g)$ in $A_{\mathbb R}(K)^2$
which are reducible.
In addition, for an arbitrary compact $K$ in $\mathbb C$, we give a
new proof (not relying on Banach algebra theory or elementary stable
rank techniques) of the fact that the Bass stable rank of $A(K)$ is
$1$.
Finally, we also characterize all compact real symmetric sets $K$ such
that $A_{\mathbb R}(K)$, respectively $C_{\mathbb R}(K)$, has Bass
stable rank $1$.
Keywords:real Banach algebras, Bass stable rank, topological stable rank, reducibility Categories:46J15, 19B10, 30H05, 93D15 

3. CJM 2009 (vol 61 pp. 282)
 Bouya, Brahim

Closed Ideals in Some Algebras of Analytic Functions
We obtain a complete description of closed ideals of the algebra
$\cD\cap \cL$, $0<\alpha\leq\frac{1}{2}$, where $\cD$ is the
Dirichlet space and $\cL$ is the algebra of analytic functions
satisfying the Lipschitz condition of order $\alpha$.
Categories:46E20, 30H05, 47A15 

4. CJM 1999 (vol 51 pp. 147)
 Suárez, Daniel

Homeomorphic Analytic Maps into the Maximal Ideal Space of $H^\infty$
Let $m$ be a point of the maximal ideal space of $\papa$ with
nontrivial Gleason part $P(m)$. If $L_m \colon \disc \rr P(m)$ is the
Hoffman map, we show that $\papa \circ L_m$ is a closed subalgebra
of $\papa$. We characterize the points $m$ for which $L_m$ is a
homeomorphism in terms of interpolating sequences, and we show that in
this case $\papa \circ L_m$ coincides with $\papa$. Also, if
$I_m$ is the ideal of functions in $\papa$ that identically vanish
on $P(m)$, we estimate the distance of any $f\in \papa$ to $I_m$.
Categories:30H05, 46J20 

5. CJM 1997 (vol 49 pp. 100)
 Lance, T. L.; Stessin, M. I.

Multiplication Invariant Subspaces of Hardy Spaces
This paper studies closed subspaces $L$
of the Hardy spaces $H^p$ which are $g$invariant ({\it i.e.},
$g\cdot L \subseteq L)$ where $g$ is inner, $g\neq 1$. If
$p=2$, the Wold decomposition theorem implies that there is
a countable ``$g$basis'' $f_1, f_2,\ldots$ of
$L$ in the sense that $L$ is a direct sum of spaces
$f_j\cdot H^2[g]$ where $H^2[g] = \{f\circ g \mid f\in H^2\}$.
The basis elements $f_j$ satisfy the
additional property that $\int_T f_j^2 g^k=0$,
$k=1,2,\ldots\,.$ We call such functions $g$$2$inner.
It also
follows that any $f\in H^2$ can be factored $f=h_{f,2}\cdot
(F_2\circ g)$ where $h_{f,2}$ is $g$$2$inner and $F$ is
outer, generalizing the classical Riesz factorization.
Using $L^p$ estimates for the canonical decomposition of
$H^2$, we find a factorization $f=h_{f,p} \cdot (F_p \circ
g)$ for $f\in H^p$. If $p\geq 1$ and $g$ is a finite
Blaschke product we obtain, for any $g$invariant
$L\subseteq H^p$, a finite $g$basis of $g$$p$inner
functions.
Categories:30H05, 46E15, 47B38 
