CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 26D15 ( Inequalities for sums, series and integrals )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2007 (vol 59 pp. 276)

Bernardis, A. L.; Martín-Reyes, F. J.; Salvador, P. Ortega
Weighted Inequalities for Hardy--Steklov Operators
We characterize the pairs of weights $(v,w)$ for which the operator $Tf(x)=g(x)\int_{s(x)}^{h(x)}f$ with $s$ and $h$ increasing and continuous functions is of strong type $(p,q)$ or weak type $(p,q)$ with respect to the pair $(v,w)$ in the case $0
Keywords:Hardy--Steklov operator, weights, inequalities
Categories:26D15, 46E30, 42B25

2. CJM 2006 (vol 58 pp. 401)

Kolountzakis, Mihail N.; Révész, Szilárd Gy.
On Pointwise Estimates of Positive Definite Functions With Given Support
The following problem has been suggested by Paul Tur\' an. Let $\Omega$ be a symmetric convex body in the Euclidean space $\mathbb R^d$ or in the torus $\TT^d$. Then, what is the largest possible value of the integral of positive definite functions that are supported in $\Omega$ and normalized with the value $1$ at the origin? From this, Arestov, Berdysheva and Berens arrived at the analogous pointwise extremal problem for intervals in $\RR$. That is, under the same conditions and normalizations, the supremum of possible function values at $z$ is to be found for any given point $z\in\Omega$. However, it turns out that the problem for the real line has already been solved by Boas and Kac, who gave several proofs and also mentioned possible extensions to $\RR^d$ and to non-convex domains as well. Here we present another approach to the problem, giving the solution in $\RR^d$ and for several cases in~$\TT^d$. Actually, we elaborate on the fact that the problem is essentially one-dimensional and investigate non-convex open domains as well. We show that the extremal problems are equivalent to some more familiar ones concerning trigonometric polynomials, and thus find the extremal values for a few cases. An analysis of the relationship between the problem for $\RR^d$ and that for $\TT^d$ is given, showing that the former case is just the limiting case of the latter. Thus the hierarchy of difficulty is established, so that extremal problems for trigonometric polynomials gain renewed recognition.

Keywords:Fourier transform, positive definite functions and measures, Turán's extremal problem, convex symmetric domains, positive trigonometric polynomials, dual extremal problems
Categories:42B10, 26D15, 42A82, 42A05

3. CJM 2002 (vol 54 pp. 916)

Bastien, G.; Rogalski, M.
Convexité, complète monotonie et inégalités sur les fonctions zêta et gamma sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques
We give optimal upper and lower bounds for the function $H(x,s)=\sum_{n\geq 1}\frac{1}{(x+n)^s}$ for $x\geq 0$ and $s>1$. These bounds improve the standard inequalities with integrals. We deduce from them inequalities about Riemann's $\zeta$ function, and we give a conjecture about the monotonicity of the function $s\mapsto[(s-1)\zeta(s)]^{\frac{1}{s-1}}$. Some applications concern the convexity of functions related to Euler's $\Gamma$ function and optimal majorization of elementary functions of Baskakov's operators. Then, the result proved for the function $x\mapsto x^{-s}$ is extended to completely monotonic functions. This leads to easy evaluation of the order of the generating series of some arithmetical functions when $z$ tends to 1. The last part is concerned with the class of non negative decreasing convex functions on $]0,+\infty[$, integrable at infinity. Nous prouvons un encadrement optimal pour la quantit\'e $H(x,s)=\sum_{n\geq 1}\frac{1}{(x+n)^s}$ pour $x\geq 0$ et $s>1$, qui am\'eliore l'encadrement standard par des int\'egrales. Cet encadrement entra{\^\i}ne des in\'egalit\'es sur la fonction $\zeta$ de Riemann, et am\`ene \`a conjecturer la monotonie de la fonction $s\mapsto[(s-1)\zeta(s)]^{\frac{1}{s-1}}$. On donne des applications \`a l'\'etude de la convexit\'e de fonctions li\'ees \`a la fonction $\Gamma$ d'Euler et \`a la majoration optimale des fonctions \'el\'ementaires intervenant dans les op\'erateurs de Baskakov. Puis, nous \'etendons aux fonctions compl\`etement monotones sur $]0,+\infty[$ les r\'esultats \'etablis pour la fonction $x\mapsto x^{-s}$, et nous en d\'eduisons des preuves \'el\'ementaires du comportement, quand $z$ tend vers $1$, des s\'eries g\'en\'eratrices de certaines fonctions arithm\'etiques. Enfin, nous prouvons qu'une partie du r\'esultat se g\'en\'eralise \`a une classe de fonctions convexes positives d\'ecroissantes.

Keywords:arithmetical functions, Baskakov's operators, completely monotonic functions, convex functions, inequalities, gamma function, zeta function
Categories:26A51, 26D15

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/